Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T14:17:54.024Z Has data issue: false hasContentIssue false

Kelvin-Helmholtz instability of anisotropic plasma in a magnetic field

Published online by Cambridge University Press:  13 March 2009

S. Duhau
Affiliation:
Departamento de Fisica, Facultad do Ciencias Exactas y Naturales, Universidad de Buenos Aires
J. Gratton
Affiliation:
Consejo Nacional de Investigaciones Cientilicas y Tecnicas, Buenos Aires and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Univorsidad de Buenos Aires

Abstract

The Kelvin-Helmholtz problem is analyzed by a set of general hydromagnetic equations, which includes ideal magnetohydrodynamic and Chew-Goldberger-Low models as particular cases. A formalism is given that facilitates comparison between results from different models. A sheared flow is one in which the velocity has no component in the y direction, and such that the x and z components of the velocity depend on the y co-ordinate. A sheared field is defined similarly. The differential equations for linear modes of oscillation of a sheared flow in a sheared magnetic field is obtained; and the energy of these modes is studied. As a particular case of oscillations of a sheared flow, the properties of the modes excited by arbitrary modulation of a tangential discontinuity are studied. The relationship between radiation of waves from such a discontinuity and instability of the system is brought out by considering the system energy. Domains of absolute stability are given; and the different hydromagnetic models are compared by examining the predicted domains. It is found that anisotropy plays an important role in the conditions of stability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERNCES

Abraham-Shrauner, B. 1973 Plasma Phys. 15, 375.CrossRefGoogle Scholar
Anderson, J. E. 1963 Magnetohydrodynamic Shock Waves. MIT.CrossRefGoogle Scholar
Burlaga, L. F. 1971 Space Sci. Rev. 12, 600.CrossRefGoogle Scholar
Chew, G., Goldberger, M. & Low, F. 1956 Proc. Roy. Soc., A 236, 112.Google Scholar
Chen, L. & Hasegawa, A. 1974 J. Geophys. Res. 79, 124.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford.Google Scholar
Dobrowolny, M. 1972 Phys. Fluids, 15, 2203.CrossRefGoogle Scholar
Dungey, J. W. & Southwood, D. J. 1969 Space Sci. Rev. 10, 672.Google Scholar
Duhau, S., Gratton, F. & Gratton, J. 1970 Phys. Fluids, 13, 1503.CrossRefGoogle Scholar
Duhau, S., Gratton, F. & Gratton, J. 1971 Phys. Fluids, 14, 2067.CrossRefGoogle Scholar
Duhau, S. & Gratton, J. 1973 Phys. Fluids, 16, 150.CrossRefGoogle Scholar
Fejer, J. A. 1962 Phys. Fluids, 7, 499.CrossRefGoogle Scholar
Gratton, J. & Gratton, F. 1971 Plasma Phys. 13, 567.CrossRefGoogle Scholar
Gratton, F., Gratton, J. & Sanchez, J. 1971 Nuclear Fusion, 11, 25.CrossRefGoogle Scholar
Hundhausen, A. J. 1968 Space Sci. Rev. 8, 690.CrossRefGoogle Scholar
Parker, E. N. 1967 Dynamical properties of the magnetosphere. Physics of the Magneto sphere (ed. Carovillano, R. L., McCaly, J. F. and Radoski, H. R.). Reidel.Google Scholar
Mckenzie, J. F. 1970 Planet. Space Sci. 18, 1.CrossRefGoogle Scholar
Rodrigez-Trelles, F. 1970 Dto. de Fisica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Serie Ediciones Previas 16.Google Scholar
Rudakov, L. I. & Sagdeev, R. F. 1959 Plasma Physics and the Problem of Thermonuclear Reactions, vol. 3, p. 321. Pergamon.Google Scholar
Rukhadze, A. & Silin, V. P. 1961 Soviet Phys. Uspekhi, 9, 459.CrossRefGoogle Scholar
Sen, A. 1965 Planet. Space Sci. 13, 131.CrossRefGoogle Scholar
Skiles, D, & Kunkel, W. 1971 Phys. Fluids, 14, 1029.CrossRefGoogle Scholar
Southwood, D. J. 1968 Planet. Space Sci. 16, 587.CrossRefGoogle Scholar
Sturrok, P. A. 1960 J. Appl. Phys. 31, 2052.CrossRefGoogle Scholar