Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T11:12:39.841Z Has data issue: false hasContentIssue false

Ion-channel laser growth rate and beam quality requirements

Published online by Cambridge University Press:  21 May 2018

X. Davoine*
Affiliation:
CEA DAM DIF, 91297 Arpajon, France
F. Fiúza
Affiliation:
High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
R. A. Fonseca
Affiliation:
DCTI/ISCTE – Lisbon University Institute, Lisbon, Portugal GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Lisbon, Portugal
W. B. Mori
Affiliation:
University of California Los Angeles, Los Angeles, USA
L. O. Silva
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Lisbon, Portugal
*
Email address for correspondence: [email protected]

Abstract

In this paper, we determine the growth rate of the exponential radiation amplification in the ion-channel laser, where a relativistic electron beam wiggles in a focusing ion channel that can be created in a wakefield accelerator. For the first time the radiation diffraction, which can limit the amplification, is taken into account. The electron beam quality requirements to obtain this amplification are also presented. It is shown that both the beam energy and wiggler parameter spreads should be limited. Two-dimensional and three-dimensional particle-in-cell simulations of the self-consistent ion-channel laser confirm our theoretical predictions.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, K.-R., Katsouleas, T. C. & Dawson, J. M. 1990 On the amplification mechanism of the ion-channel laser. IEEE Trans. Plasma Sci. 18, 837841.Google Scholar
Davoine, X., Lefebvre, E., Rechatin, C., Faure, J. & Malka, V. 2009 Cold optical injection producing monoenergetic, multi-gev electron bunches. Phys. Rev. Lett. 102, 065001.Google Scholar
Ersfeld, B., Bonifacio, R., Chen, S., Islam, M. R., Smorenburg, P. W. & Jaroszynski, D. A. 2014 The ion channel free-electron laser with varying betatron amplitude. New J. Phys. 16 (9), 093025.CrossRefGoogle Scholar
Esarey, E., Shadwick, B. A., Catravas, P. & Leemans, W. P. 2002 Synchrotron radiation from electron beams in plasma-focusing channels. Phys. Rev. E 65, 056505.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J., Burgy, F. & Malka, V. 2004 A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.CrossRefGoogle ScholarPubMed
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. & Malka, V. 2006 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737739.Google Scholar
Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S., Katsouleas, T. et al. 2002 OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators, pp. 342351. Springer.Google Scholar
Geddes, C. G. R., Toth, C., van Tilborg, J., Esarey, E., Schroeder, C. B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W. P. 2004 High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.Google Scholar
Godfrey, B. B. 1974 Numerical cherenkov instabilities in electromagnetic particle codes. J. Comput. Phys. 15 (4), 504521.CrossRefGoogle Scholar
Huang, Z. & Kim, K.-J. 2007 Review of x-ray free-electron laser theory. Phys. Rev. Spec. Top. 10, 034801.Google Scholar
Liu, C. S., Tripathi, V. K. & Kumar, N. 2007 Vlasov formalism of the laser driven ion channel x-ray laser. Plasma Phys. Control. Fusion 49 (3), 325.Google Scholar
Lu, W., Huang, C., Zhou, M., Mori, W. B. & Katsouleas, T. 2006 Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002.Google Scholar
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G., Hooker, C. J. et al. 2004 Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535538.CrossRefGoogle ScholarPubMed
Martins, S. F., Fonseca, R. A., Lu, W., Mori, W. B. & Silva, L. O. 2010 Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames. Nat. Phys. 6, 311316.Google Scholar
McGuffey, C., Thomas, A. G. R., Schumaker, W., Matsuoka, T., Chvykov, V., Dollar, F. J., Kalintchenko, G., Yanovsky, V., Maksimchuk, A., Krushelnick, K. et al. 2010 Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104, 025004.Google Scholar
Pak, A., Marsh, K. A., Martins, S. F., Lu, W., Mori, W. B. & Joshi, C. 2010 Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003.Google Scholar
Rosenzweig, J., Pellegrini, C., Serafini, L., Ternieden, C. & Travish, G. 1997 Space-charge oscillations in a self-modulated electron beam in multi-undulator free-electron lasers. Nucl. Instrum. Meth. Phys. Res. A 393 (1), 376379; free Electron Lasers 1996.Google Scholar
Rousse, A., Phuoc, K. T., Shah, R., Pukhov, A., Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J.-P., Umstadter, D. et al. 2004 Production of a kev x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005.Google Scholar
Vay, J.-L. 2000 A new absorbing layer boundary condition for the wave equation. J. Comput. Phys. 165 (2), 511521.CrossRefGoogle Scholar
Vay, J.-L. 2007 Noninvariance of space- and time-scale ranges under a lorentz transformation and the implications for the study of relativistic interactions. Phys. Rev. Lett. 98, 130405.Google Scholar
Vieira, J., Martins, S. F., Pathak, V. B., Fonseca, R. A., Mori, W. B. & Silva, L. O. 2011 Magnetic control of particle injection in plasma based accelerators. Phys. Rev. Lett. 106, 225001.Google Scholar
Whittum, D. H. 1992 Electromagnetic instability of the ion-focused regime. Phys. Fluids B 4, 730739.Google Scholar
Whittum, D. H., Sessler, A. M. & Dawson, J. M. 1990 Ion-channel laser. Phys. Rev. Lett. 64, 25112514.Google Scholar