Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T00:53:35.106Z Has data issue: false hasContentIssue false

Ion-acoustic solitary waves in a weakly relativistic warm plasma at the critical phase velocity

Published online by Cambridge University Press:  13 March 2009

S. K. El-Labany
Affiliation:
Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
H. O. Nafie
Affiliation:
Physics Department, Faculty of Science, Zagazig University, Benha, Egypt
A. El-Sheikh
Affiliation:
Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt

Abstract

Ion-acoustic solitary waves in a weakly relativistic warm plasma at the critical phase velocity are investigated using reductive perturbation theory. The basic set of fluid equations describing the system is reduced to a renormalized warmion modified Korteweg—de Vries (mKdV) equation for the first-order perturbed potential and a renormalized linear inhomogeneous equation for the second-order perturbed potential. The stationary solution of the coupled equations is obtained. The cold-plasma limit is considered in order to rule comparisons with work of Pakira et al.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Das, G. C. & Tagare, S. G. 1975 J. Plasma Phys. 17, 1025.CrossRefGoogle Scholar
Das, G. C. & Paul, S. N. 1985 Phys. Fluids 28, 823.CrossRefGoogle Scholar
El-Labany, S. K. 1992 Astrophys. Space Sci. 191, 185.CrossRefGoogle Scholar
El-Labany, S. K. & El-Sheikh, A. 1992 Astrophys. Space Sci. 197, 289.CrossRefGoogle Scholar
El-Labany, S. K. 1993 J. Plasma Phys. 50, 495.CrossRefGoogle Scholar
El-Labany, S. K. 1995 J. Plasma Phys. 54, 295.CrossRefGoogle Scholar
Ichikawa, Y., Mitsu-Hashi, T. & Kono, K. 1976 J. Phys. Soc. Japan 41, 1382.CrossRefGoogle Scholar
Ikezi, H., Taylor, R. J. & Baker, D. R. 1970 Phys. Rev. Lett. 25, 11.CrossRefGoogle Scholar
Infeld, E. & Rowlands, G. 1990 Nonlinear Waves, Solitons and Chaos. Cambridge University Press.Google Scholar
Kodama, Y. & Taniuti, T. 1978 J. Phys. Soc. Jpn 45, 298.CrossRefGoogle Scholar
Murawski, K. & Infeld, E. 1988 Aust. J. Phys. 41, 1.CrossRefGoogle Scholar
Nejoh, Y. 1987 J. Plasma Phys. 37, 487CrossRefGoogle Scholar
Ono, H. 1991 J. Phys. Soc. Jpn 60, 3692.CrossRefGoogle Scholar
Pakira, G. B., Chowdhury, A. R. & Paul, S. N. 1988 J. Plasma Phys. 40, 359.CrossRefGoogle Scholar
Schamel, H. 1973 J. Plasma Phys. 9, 377.CrossRefGoogle Scholar
Taniuti, T. 1974 Suppl. Prog. Theor. Phys. 55, 1.CrossRefGoogle Scholar
Verheest, F. 1988 J. Plasma Phys. 39, 71CrossRefGoogle Scholar
Washimi, H. & Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Watanabe, S. 1984 J. Phys. Soc. Jpn 53, 950.CrossRefGoogle Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley, New York.Google Scholar
Yashvir, Tiwari R. S. & Sharma, S. R. 1988 Can. J. Phys. 66, 824.CrossRefGoogle Scholar