Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T12:22:13.208Z Has data issue: false hasContentIssue false

Ion acoustic traveling waves

Published online by Cambridge University Press:  15 January 2014

G. M. Webb*
Affiliation:
Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35805, USA
R. H. Burrows
Affiliation:
Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35805, USA
X. Ao
Affiliation:
Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35805, USA
G. P. Zank
Affiliation:
Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35805, USA Department of Physics, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
*
Email address for correspondence: [email protected]

Abstract

Models for traveling waves in multi-fluid plasmas give essential insight into fully nonlinear wave structures in plasmas, not readily available from either numerical simulations or from weakly nonlinear wave theories. We illustrate these ideas using one of the simplest models of an electron–proton multi-fluid plasma for the case where there is no magnetic field or a constant normal magnetic field present. We show that the traveling waves can be reduced to a single first-order differential equation governing the dynamics. We also show that the equations admit a multi-symplectic Hamiltonian formulation in which both the space and time variables can act as the evolution variable. An integral equation useful for calculating adiabatic, electrostatic solitary wave signatures for multi-fluid plasmas with arbitrary mass ratios is presented. The integral equation arises naturally from a fluid dynamics approach for a two fluid plasma, with a given mass ratio of the two species (e.g. the plasma could be an electron–proton or an electron–positron plasma). Besides its intrinsic interest, the integral equation solution provides a useful analytical test for numerical codes that include a proton–electron mass ratio as a fundamental constant, such as for particle in cell (PIC) codes. The integral equation is used to delineate the physical characteristics of ion acoustic traveling waves consisting of hot electron and cold proton fluids.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. and Stegun, I. A. 1965 Handbook of Mathematical Functions. New York: Dover.Google Scholar
Bale, S. D., Kellog, P. J., Larson, D. E., Lin, R. P., Goetz, K. and Lepping, R. 1998 Bipolar electrostatic structures in the shock transition region: evidence of electron phase space holes. Geophys. Res. Lett. 25, 2929.CrossRefGoogle Scholar
Baluku, T. K., Hellberg, M. A. and Verheest, F. 2010 New light on ion acoustic solitary waves in a plasma with two-temperature electrons. EPL (Europhysics Letters) 91, 15001.Google Scholar
Bridges, T. J. 1992 Spatial Hamiltonian structure, energy flux and the water wave problem. Proc. Roy. Soc. Lond. A 439, 297315.Google Scholar
Bridges, T. J. 1997a Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121, 147190.Google Scholar
Bridges, T. J. 1997b A geometric formulation of the conservation of wave action and its implications for signature and classification of instabilities. Proc. Roy. Soc. A 453, 13651395.Google Scholar
Bridges, T. J. and Reich, S. 2001 Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284, 184193.CrossRefGoogle Scholar
Bridges, T. J., Hydon, P. E. and Reich, S. 2005 Vorticity and symplecticity in Lagrangian fluid dynamics. J. Phys. A: Math. Gen. 38, 14031418.Google Scholar
Bridges, T. J. and Reich, S. 2006 Numerical methods for Hamiltonian pdes. J. Phys. A. Math. Gen. 39, 52875320.Google Scholar
Brio, M., Zakharian, A. R. and Webb, G. M. 2010 Numerical time dependent partial differential equations for scientists and engineers. In: Mathematics in Science and Engineering, Ist edn, Vol. 213 (ed. Chui, C. K.). Boston, MA: Elsevier Press, pp. 199204.Google Scholar
Burrows, R. H., Zank, G. P., Webb, G. M., Burlaga, L. F. and Ness, N. F. 2010 Pickup ion dynamics at the heliospheric termination shock observed by voyager 2. Ap. J. 715, 11091116, doi:10.1088/0004-637X/715/2/1109.9.Google Scholar
Cotter, C. J., Holm, D. D. and Hydon, P. E. 2007 Multi-symplectic formulation of fluid dynamics using the inverse map. Proc. Roy. Soc. Lond. A 463, 26172687.Google Scholar
Dubinin, E., Sauer, K. and McKenzie, J. F. 2003 Nonlinear stationary whistler waves and whistler solitons (oscillitons). Exact solutions. J. Plasma Phys. 69, 305330.CrossRefGoogle Scholar
Dubinin, E. M., et al. 2007 Coherent whistler emissions in the magnetosphere – cluster observations. Ann. Geophys. 25, 303315, http://www.ann-geophys.net/25/303/2007/.Google Scholar
Dubinov, A. E. 2007a Theory of nonlinear space charge waves in neutralized electron flows: gas dynamic approach. Plasma Phys. Rep. 33 (3), 210217.CrossRefGoogle Scholar
Dubinov, A. E. 2007b Gas dynamic approach in the nonlinear theory of ion acoustic waves in a plasma: an exact solution. J. Appl. Mech. Tech. Phys. 48 (5), 621628.CrossRefGoogle Scholar
Holm, D. D. and Kupershmidt, B. A. 1983 Poisson brackets and Clebsch representations for magnetohydrodynamics, multi-fluid plasmas and elasticity. Physica D 6, 347363.Google Scholar
Hydon, P. E. 2005 Multi-symplectic conservation laws for differential and differential-difference equations. Proc. Roy. Soc. A 461, 16271637, doi:10.1098/rspa.2004.1444.CrossRefGoogle Scholar
Levermore, C. D. 1988 The hyperbolic nature of the zero dispersion KdV limit. Comm. Partial Differ. Equ. 13, 495.Google Scholar
Lipatov, A. S. and Zank, G. P. 1999 Pickup ion acceleration at low- beta p perpendicular shocks. Phys. Rev. Lett. 82, 3609.CrossRefGoogle Scholar
Mace, R. L., McKenzie, J. F. and Webb, G. M. 2007 Conservation laws for steady flow and solitons in a multi-fluid plasma re-visited. Phys. Plasmas 14 (1), 012310-012310-9, doi:10.1063/1.2423250.Google Scholar
Marsden, J. E., Patrick, G. W. and Shkoller, S. 1998 Multisymplectic geometry, variational integrators and nonlinear pdes. Commun. Math. Phys. 199, 351395.Google Scholar
Marsden, J. E. and Shkoller, S. 1999 Multi-symplectic geometry, covariant Hamiltonians and water waves. Math. Proc. Camb. Phil. Soc. 125, 553575.CrossRefGoogle Scholar
McKenzie, J. F. 2002 The ion-acoustic soliton: a gas-dynamic viewpoint. Phys. Plasmas 9 (3), 800.Google Scholar
McKenzie, J. F. 2003 Electron acoustic-Langmuir solitons in a two-component electron plasma. J. Plasma Phys. 69, 199.Google Scholar
McKenzie, J. F. and Doyle, T. B. 2003 A unified view of acoustic-electrostatic solitons in complex plasmas. New J. Phys. 5, 26.1–26.10.Google Scholar
McKenzie, J. F., Dubinin, E., Sauer, K. and Doyle, T. B. 2004 The application of the constants of the motion to nonlinear stationary waves in complex plasmas: a unified fluid dynamic viewpoint. J. Plasma Phys. 70, 431462.CrossRefGoogle Scholar
McKenzie, J. F., Mace, R. L. and Doyle, T. B. 2006 Nonlinear hall MHD and electrostatic ion-cyclotron waves: a Hamiltonian-geometric viewpoint. J. Plasma Phys. 73 (5), 687700.Google Scholar
Moslem, W. M. 2000 Propagation of ion acoustic waves in a warm multicomponent plasma with an electron beam. J. Plasma Phys. 61(part 2), 177189.Google Scholar
Moslem, W. M. 2000 Higher order contributions to ion-acoustic solitary waves in a warm multicomponent plasma with an electron beam. J. Plasma Phys. 63(part 2), 139155.Google Scholar
Oka, M., Zank, G. P., Burrows, R. H. and Shinohora, I. 2011 Energy dissipation at the termination shock: 1D PIC simulation. In: AIP Proc. Conf., 1366 (ed. Florinski, V., Heerikhuisen, J., Zank, G. P. and Gallagher, D. L.). Melville, NY: American Institute of Physics, pp. 5359.Google Scholar
Oka, M., Fujimoto, M., Shinohara, I. and Phan, T. D. 2010 Island surfing mechanism of electron acceleration during magnetic reconnection. J. Geophys. Res. (Space Physics) 115, A08223, ArXiv:1004.1150-[astro-ph.SR].Google Scholar
Ott, E. and Sudan, R. N. 1969 Nonlinear theory of ion acoustic waves with Landau damping. Phys. Fluids 12 (11), 23882394.Google Scholar
Richardson, J. D., Kasper, J. C., Wang, C., Belcher, J. W. and Lazarus, A. J. 2008 Nature 454, 63.Google Scholar
Sauer, K., Dubinin, E. and McKenzie, J. F. 2001 New type of soliton in bi-ion plasmas and possible implications. Geophys. Res. Lett. 28, 3589.Google Scholar
Sauer, K., Dubinin, E. and McKenzie, J. F. 2002 Coherent wave emission by whistler oscillitons: application to lion roars. Geophys. Res. Lett. 29, 2226.Google Scholar
Sauer, K., Dubinin, E. and McKenzie, J. F. 2003 Solitons and oscillitons in multi-ion plasmas. Nonlin. Proc. Geophys. 10, 121.CrossRefGoogle Scholar
Shin, K., Kojima, H., Masumoto, H. and Mukai, T. 2008 Characteristics of electrostatic solitary waves in the Earth's foreshock region: Geotail observations. J. Geophys. Res. (Space Physics) 113, A03101.Google Scholar
Spencer, R. G. 1982 The Hamiltonian structure of multi-species fluid electrodynamics. In: Mathematical Methods in Hydrodynamics and Integrability in Dynamical Systems (ed. Tabor, M. and Treve, Y. M.). AIP Proc. Conf. 88, 121126.Google Scholar
Spencer, R. G. and Kaufman, A. N. 1982 Hamiltonian structure of two-fluid plasma dynamics. Phys. Rev. A 25 (4), 24372439.CrossRefGoogle Scholar
Tidman, D. A. and Krall, N. A. 1971 Shock Waves in Collisionless Plasmas. Wiley Series in Plasma Physics. New York: Interscience.Google Scholar
Verheest, F., Cattaert, T., Dubinin, E., Sauer, K. and McKenzie, J. F. 2004 Whistler oscillitons revisited: the role of charge neutrality? Nonlin. Proc. Geophys. 11, 447452.Google Scholar
Verheest, F., Cattaert, T., Lakhina, G. S. and Singh, S. V. 2004 Gas-dynamic description of electrostatic solitons. J. Plasma Phys. 70, 237.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17 (19), 996998.Google Scholar
Webb, G. M., McKenzie, J. F., Dubinin, E. M. and Sauer, K. 2005 Hamiltonian formulation of nonlinear travelling whistler waves. Nonl. Proc. Geophys. 12, 643660.Google Scholar
Webb, G. M., McKenzie, J. F., Mace, R. L., Ko, C. M. and Zank, G. P. 2007 Dual variational principles for nonlinear traveling waves in multifluid plasmas. Phys. Plasmas 4 (8), 082318-082318-17, doi:10.1063/1.2757154.Google Scholar
Webb, G. M., Ko, C. M., Mace, R. L., McKenzie, J. F. and Zank, G. P. 2008 Integrable, oblique travelling waves in charge neutral, two-fluid plasmas. Nonl. Proc. Geophys. 15, 179208.Google Scholar
Wilson, L. B. III, Cattel, C., Kellog, P. J., Goetz, K., Kersten, K., Hanson, L., MacGregor, R. and Kasper, J. C. 2007 Waves in interplanetary shocks: a Wind/WAVES study. PRL 99, 041101.Google Scholar
Zank, G. P., Pauls, H. L., Cairns, I. H. and Webb, G. M. 1996 Interstellar pickup ions and quasi-perpendicular shocks: implications for the termination shock and interplanetary shocks. J. Geophys. Res. 101, 457.Google Scholar
Zank, G. P., Heerikhuisen, J., Pogorelov, N. V., Burrows, R. and McComas, D. 2010 Microstructure of the heliospheric termination shock: implications for energetic neutral atom observations. Ap. J. 708, 10921106, doi:10.1088/0004-637X/708/2/1092.Google Scholar