Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T14:37:00.802Z Has data issue: false hasContentIssue false

Instability of higher harmonic electrostatic ion cyclotron waves in a negative ion plasma

Published online by Cambridge University Press:  01 August 2009

M. ROSENBERG
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA ([email protected])
R. L. MERLINO
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA

Abstract

We present a kinetic theory analysis of the electrostatic ion cyclotron (EIC) instability in a plasma containing positive ions, electrons, and negative ions that are much more massive than the positive ions. Conditions are investigated for exciting the fundamental and the higher harmonic EIC waves associated with each ion species. We find that as the concentration of heavy negative ions increases, the wave frequencies increase, the unstable spectrum in general shifts to longer perpendicular wavelengths, and the growth of higher harmonic EIC waves tends to increase within certain parameter ranges. Applications to possible laboratory plasmas are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barkan, A., D'Angelo, N. and Merlino, R. L., 1995 Planet. Space Sci. 43, 905.CrossRefGoogle Scholar
Chow, V. W. and Rosenberg, M. 1995 Planet. Space Sci. 43, 613.CrossRefGoogle Scholar
Chow, V. W. and Rosenberg, M. 1996a Phys. Plasmas 3, 12021211.CrossRefGoogle Scholar
Chow, V. W. and Rosenberg, M. 1996b Planet. Space Sci. 44, 465.CrossRefGoogle Scholar
D'Angelo, N. and Merlino, R. L. 1986 IEEE Trans. Plasma Sci. 14, 285.CrossRefGoogle Scholar
D'Angelo, N. 1990 Planet. Space Sci. 38, 1143.CrossRefGoogle Scholar
D'Angelo, N. 1998 Planet. Space Sci. 46, 1671.CrossRefGoogle Scholar
Drummond, W. E. and Rosenbluth, M. N. 1962 Phys. Fluids 5, 1507.CrossRefGoogle Scholar
Fried, B. D. and Conte, S. 1961 The Plasma Dispersion Function. Academic Press, NY.Google Scholar
Kim, S.-H. and Merlino, R. L. 2006 Phys. Plasmas 13, 052118.CrossRefGoogle Scholar
Kim, S.-H. and Merlino, R. L. 2007 Phys. Rev. E 76, 035401.Google Scholar
Kim, S.-H., Heinrich, J. R. and Merlino, R. L. 2008 Electrostatic ion-cyclotron waves in a plasma with heavy negative ions. Planet. Space Sci. doi:10.1016/j.pss.2008.07.020.CrossRefGoogle Scholar
Kindel, J. M. and Kennel, C. F. 1971 J. Geophys. Res. 76, 3055.CrossRefGoogle Scholar
Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics, McGraw-Hill, NY.CrossRefGoogle Scholar
Merlino, R. L. and Kim, S.-H. 2006 Appl. Phys. Lett. 89, 091501.CrossRefGoogle Scholar
Okuda, H., Cheng, C. Z. and Lee, W. W. 1981 Phys. Plasmas 24, 10601068.Google Scholar
Rapp, M. et al. 2005 Geophys. Res. Lett. 32, L23821.CrossRefGoogle Scholar
Rasmussen, J. J. and Schrittwieser, R. W. 1991 IEEE Trans. Plasma Sci. 19, 457501.CrossRefGoogle Scholar
Rosenberg, M. and Chow, V. W. 1999 J. Plasma Phys. 61, 51.CrossRefGoogle Scholar
Rosenberg, M. and Merlino, R. L. 2007 Planet. Space Sci. 55, 1464.CrossRefGoogle Scholar
Rosenbluth, M. N. 1965 Microinstabilities. Plasma Physics. Vienna: IAEA, pp. 485514.Google Scholar
Satyanarayana, P., Chaturvedi, P. K., Keskinen, M. J., Huba, J. D. and Ossakow, S. L. 1985 J. Geophys. Res. 90, 2209.Google Scholar
Song, B., Suszcynsky, D., D'Angelo, N. and Merlino, R. L. 1989 Phys. Fluids B 1, 2316.CrossRefGoogle Scholar
Sorasio, G. and Rosenberg, M. 2001 J. Plasma Phys. 65, 319.CrossRefGoogle Scholar