Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T04:14:07.576Z Has data issue: false hasContentIssue false

The initial value problem in Lagrangian drift kinetic theory

Published online by Cambridge University Press:  23 May 2016

J. W. Burby*
Affiliation:
Courant Institute of Mathematical Sciences, New York, NY 10012, USA
*
Email address for correspondence: [email protected]

Abstract

Existing high-order variational drift kinetic theories contain unphysical rapidly varying modes that are not seen at low orders. These unphysical modes, which may be rapidly oscillating, damped or growing, are ushered in by a failure of conventional high-order drift kinetic theory to preserve the structure of its parent model’s initial value problem. In short, the (infinite dimensional) system phase space is unphysically enlarged in conventional high-order variational drift kinetic theory. I present an alternative, ‘renormalized’ variational approach to drift kinetic theory that manifestly respects the parent model’s initial value problem. The basic philosophy underlying this alternate approach is that high-order drift kinetic theory ought to be derived by truncating the all-orders system phase-space Lagrangian instead of the usual ‘field$+$particle’ Lagrangian. For the sake of clarity, this story is told first through the lens of a finite-dimensional toy model of high-order variational drift kinetics; the analogous full-on drift kinetic story is discussed subsequently. The renormalized drift kinetic system, while variational and just as formally accurate as conventional formulations, does not support the troublesome rapidly varying modes.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R. & Marsden, J. E. 2008 Foundations of Mechanics. AMS Chelsea.Google Scholar
Bourgain, J. 1996 Invariant measures for the $2$ d-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176 (2), 421445.Google Scholar
Brizard, A. J. 2000 Variational principle for nonlinear gyrokinetic Vlasov–Maxwell equations. Phys. Plasmas 7, 4816.CrossRefGoogle Scholar
Brizard, A. J. & Hahm, T. S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421468.Google Scholar
Burby, J. W. & Brizard, A. J. 2015 Energetically consistent collisional gyrokinetics. Phys. Plasmas 22, 100707.Google Scholar
Burby, J. W., Brizard, A. J., Morrison, P. J. & Qin, H. 2015 Hamiltonian gyrokinetic Vlasov–Maxwell system. Phys. Lett. A 379, 20732077.Google Scholar
Cary, J. R. & Littlejohn, R. G. 1983 Noncanonical Hamiltonian mechanics and its application to magnetic field line flow. Ann. Phys. 151, 134.Google Scholar
Cendra, H., Holm, D. D., Hoyle, M. J. W. & Marsden, J. E. 1998 The Maxwell–Vlasov equations in Euler–Poincaré form. J. Math. Phys. 39, 31383157.Google Scholar
Craig, W. & Wayne, C. E. 1994 Periodic solutions of nonlinear Schrödinger equations and the Nash–Moser method. In Hamiltonian Mechanics: Integrability and Chaotic Behavior, p. 103. Springer.Google Scholar
Holm, D. D., Marsden, J. E. & Ratiu, T. S. 1998 The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 181.Google Scholar
Holm, D. D. & Tronci, C. 2012 Euler–Poincaré formulation of hybrid plasma models. Commun. Math. Sci. 10 (1), 191222.Google Scholar
Jones, C. K. R. T. 1995 Geometric Singular Perturbation Theory, Lecture Notes in Mathematics, vol. 1609, pp. 44118. Springer.Google Scholar
Krommes, J. A. & Hammett, G. W.2013 Report of the study group GK2 on momentum transport in gyrokinetics. PPPL Report PPPL-4945, Princeton University.Google Scholar
Kruger, S. E., Hegna, C. C. & Callen, J. D. 1998 Generalized reduced magnetohydrodynamic equations. Phys. Plasmas 5, 4169.Google Scholar
Lee, J. & Wald, R. M. 1990 Local symmetries and constraints. J. Math. Phys. 31, 725.Google Scholar
Marsden, J. E., Patrick, G. W. & Shkoller, S. 1998 Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199, 351395.Google Scholar
Miyato, N., Scott, B. D., Strintzi, D. & Tokuda, S. 2009 A modification of the guiding-centre fundamental 1-form with strong $E\times B$ flow. J. Phys. Soc. Japan 78, 104501.Google Scholar
Morrison, P. J. & Kotschenreuther, M. 1990 The Energy Principle, Negative Energy Modes, and Stability, chap. 7, p. 910. World Scientific.Google Scholar
Morrison, P. J. & Pfirsch, D. 1989 Free energy expressions for Vlasov equilibria. Phys. Rev. A 40, 3898.Google Scholar
Motohashi, H. & Suyama, T.2015 Third order equations of motion and the Ostrogradsky instability; doi:10.1103/PhysRevD.91.085009.CrossRefGoogle Scholar
Ostrogradsky, M. V. 1850 Mem. Acad. St. Petersbourg VI 4, 385.Google Scholar
Parra, F. I., Barnes, M., Calvo, I. & Catto, P. J. 2012 Intrinsic rotation with gyrokinetic models. Phys. Plasmas 19, 056116.Google Scholar
Parra, F. I. & Catto, P. J. 2008 Limitations of gyrokinetics on transport time scales. Plasma Phys. Control. Fusion 50, 065014.Google Scholar
Ramos, J. J. 2008 Finite-larmor-radius kinetic theory of a magnetized plasma in the macroscopic flow reference frame. Phys. Plasmas 515, 082106.Google Scholar
Scott, B.2016 Gyrokinetic theory and dynamics of the tokamak edge. Contrib. Plasma Phys. (in press); doi:10.1002/ctpp.201010039.Google Scholar
Scott, B. & Smirnov, J. 2010 Energetic consistency and momentum conservation in the gyrokinetic description of tokamak plasmas. Phys. Plasmas 17, 112302.Google Scholar
Squire, J., Qin, H., Tang, W. M. & Chandre, C. 2013 The Hamiltonian structure and Euler–Poincaré formulation of the Vlasov–Maxwell and gyrokinetic systems. Phys. Plasmas 20, 022501.Google Scholar
Sugama, H. 2000 Gyrokinetic field theory. Phys. Plasmas 7, 466.Google Scholar
Tronci, C. 2010 Hamiltonian approach to hybrid plasma models. J. Phys. A: Math. Theor. 43, 375501.Google Scholar
Vanneste, J. & Wirosoetisno, D.2006 Two-dimensional Euler flows in slowly deforming domains. arXiv:math/0611875.Google Scholar
Wayne, C. E. 1990 Periodic and quasi-periodic solutions of nonlinear wave equations via kam theory. Commun. Math. Phys. 127 (3), 479528.Google Scholar
Wentzel, G. 1949 Quantum Theory of Fields. Interscience.Google Scholar