Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T14:11:00.417Z Has data issue: false hasContentIssue false

Influence of non-thermal shielding on the Ramsauer phenomena for the electron–atom-induced dipole scattering in Lorentzian plasmas

Published online by Cambridge University Press:  24 August 2012

DAE-HAN KI
Affiliation:
Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791, South Korea
YOUNG-DAE JUNG
Affiliation:
Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791, South Korea Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407, USA ([email protected])

Abstract

The non-thermal shielding effects on the Ramsauer phenomena for the electron–atom-induced dipole scattering are investigated in Lorentzian plasmas. The phase theory and the modified Buckingham-type potential are employed to obtain phase shift and collision cross section as functions of spectral index, scattering length, polarizability, collision energy, and the Debye radius. It is found that the non-thermal effect enhances the collision cross section below the Ramsauer energy and suppresses the collision cross section above the Ramsauer energy. In addition, it is found that the non-thermal effect enhances the Ramsauer energy in Lorentzian plasmas.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asher, R. L., Bellert, D., Buthelezi, T., Lewis, V. and Brucat, P. J. 1995 Chem. Phys. Lett. 234, 113.CrossRefGoogle Scholar
Beyer, H. F. and Shevelko, V. P. 2003 Introduction to the Physics of Highly Charged Ions. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Chen, R. L. W. and Hobbs, E. R. 1978 Phys. Fluids 21, 856.CrossRefGoogle Scholar
Fortov, V., Iakubov, I. and Khrapak, A. 2006 Physics of Strongly Coupled Plasma. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Hasegawa, A., Mima, K. and Duong-Van, M. 1985 Phys. Rev. Lett. 54, 2608.CrossRefGoogle Scholar
Hasegawa, A. and Sato, T. 1989 Space Plasma Physics, Vol. 1 Stationary Processes. Berlin, Germany: Springer.Google Scholar
Kobzev, G. A., Iakubov, I. T. and Popovich, M. M. 1995 Transport and Optical Properties of Nonideal Plasma. New York: Plenum.CrossRefGoogle Scholar
Parks, G. K. 2004 Physics of Space Plasmas, 2nd edn. Cambridge, UK: Westview Press.Google Scholar
Ramazanov, T. S. and Dzhumagulova, K. N. 2002 Phys. Plasmas 9, 3758.CrossRefGoogle Scholar
Ramazanov, T. S., Dzhumagulova, K. N. and Gabdullin, M. T. 2006 J. Phys. A 39, 4469.Google Scholar
Ramazanov, T. S., Dzhumagulova, K. N., Gabdullin, M. T., Akbar, A. Zh. and Redmer, R. 2009 J. Phys. A 42, 214049.Google Scholar
Ramazanov, T. S., Dzhumagulova, K. N. and Omarbakiyeva, Y. A. 2005 Phys. Plasmas 12, 092702.CrossRefGoogle Scholar
Rubab, N. and Murtaza, G. 2006a Phys. Scr. 73, 145.CrossRefGoogle Scholar
Rubab, N. and Murtaza, G. 2006b Phys. Scr. 74, 178.CrossRefGoogle Scholar
Salzmann, D. 1998 Atomic Physics in Hot Plasmas. New York: Oxford University Press.CrossRefGoogle Scholar
Shevelko, V. P., Litsarev, M. S., Song, M.-Y., Tawara, H. and Yoon, J.-S. 2009 J. Phys. B 42, 065202.Google Scholar
Shevelko, V. P. and Tawara, H. 1998 Atomic Multielectron Processes. Berlin, Germany: Springer.CrossRefGoogle Scholar
Smirnov, B. M. 2003 Physics of Atoms and Ions. Berlin, Germany: Springer.Google Scholar
Smirnov, B. M. 2007 Plasma Processes and Plasma Kinetics. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar