Published online by Cambridge University Press: 13 March 2009
This paper studies the hydromagnetic stability of a cylindrical jet of a perfectly-conducting, inviscid and compressible fluid. The fluid velocities and magnetic fields, inside and outside the jet, are uniform and in the axial direction, with possible discontinuities in their values across the jet surface. For large wavelength disturbances, the jet behaves as though it were incompressible. Numerical evaluation of the roots of the dispersion relation for a number of different magnetic-field strengths and jet velocities, but for disturbances of finite ranges of wavenumbers, indicates that the jet is stable against axisymmetric disturbances, but instability is present for asymmetric disturbances when the magnetic fields are sufficiently small. The magnetic field is found to have a stabilizinginfluence when compressibility is not very large; for high compressibility, it may have even a destabilizing effect. The paper explains physically the roles of compressibility and the magnetic field in bringing about the stability of the jet. When the wavelengths of disturbances are small, the dispersion relation reduces to that for a two-dimensional jet and a vortex sheet; and the results for these cases are known from earlier studies.