Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T13:59:07.789Z Has data issue: false hasContentIssue false

Hybrid-kinetic stability properties of high-beta plasmas

Published online by Cambridge University Press:  13 March 2009

J. P. Mondt
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, MD 20742
R. C. Davidson
Affiliation:
Department of Physics and Astronomy, University of Maryland, College Park, MD 20742

Extract

A hybrid-kinetic model (Vlasov ions and drift-kinetic electrons) is used to investigate the equilibrium and stability properties of collisionless linear screw-pinch configurations, assuming low-frequency perturbations (|ω|≲ωci) but making no a priori assumptions regarding the size of the ion Larmor radius (arbitrary rLi/L⊥). A general eigenvalue equation is derived for perturbations about a general equilibrium characterized by density profile N(r), isotropic ion equilibrium f0i(H), and locally Maxwellian electrons. This eigenvalue equation clearly exhibits the importance of finite electron temperature and electron kinetic effects parallel to the magnetic field direction, and reduces to the Vlasov-fluid eigenvalue equation of Freidberg in the limit of zero electron temperature.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, D. B. & Davidson, R. C. 1975 J. Plasma Phys. 14, 77.CrossRefGoogle Scholar
Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kulsrud, R. 1958 Proc. Roy. Soc. A 244, 17.Google Scholar
Bodin, H. A. B., Green, T. S., Newton, A. A., Niblett, G. B. F. & Reynolds, J. A. 1975 Plasma Physics and Controlled Nuclear Fusion Research, vol. 1, p. 193. IAEA.Google Scholar
Bowers, E. 1971 J. Plasma Phys. 6, 87.CrossRefGoogle Scholar
Bretz, N. L. & DeSilva, A. W. 1974 Phys. Rev. Lett. 32, 138.CrossRefGoogle Scholar
Cantrell, E. L., Ellis, W. R., Harris, H. W., Jahoda, F. C., Kristal, R., Machalek, M. D., McConnell, J. R., Quinn, W. B., Ribe, F. L., Sawyer, G. A., Seibel, F. T. & Siem, R. E. 1974 Plasma Physics and Controlled Nuclear Fusion Research, vol. 3, p. 13. IAEA.Google Scholar
Chandrasekhar, S., Kaufman, A. N. & Watson, K. M. 1958 Ann. Phys. 5, 1.CrossRefGoogle Scholar
Chfung, L. & Horton, W. 1973 Ann. Phys. 81, 201.CrossRefGoogle Scholar
Chew, G. F., Goldbetrger, M. L. & Low, F. B. 1956 Proc. Roy. Soc. A 236, 112.Google Scholar
Commisso, R. & Griem, H. R. 1976 Phys. Rev. Lett. 36, 1038.CrossRefGoogle Scholar
Commisso, R. & Griem, H. R. 1977 Phys. Fluids, 20, 44.CrossRefGoogle Scholar
Davidson, B. C. & Hammer, D. A. 1972 Phys. Fluids, 15, 1282.CrossRefGoogle Scholar
Davidson, R. C. & Ogden, J. M. 1975 Phys. Fluids, 18, 1045.CrossRefGoogle Scholar
DeSilva, A. W., Dove, W. F., Spalding, I. J. & Goldenbaum, G. C. 1971 Phys. Fluids, 14, 42.CrossRefGoogle Scholar
D'Ippolito, D. A. & Davidson, R. C. 1975 Phys. Fluids, 18, 1507.CrossRefGoogle Scholar
Ellis, W. R. 1975 Nucl. Fusion, 15, 255.CrossRefGoogle Scholar
Freidberg, J. P. 1972 Phys. Fluids, 15, 1102.CrossRefGoogle Scholar
Frieman, E., Davidson, R. & Langdon, B. 1966 Phys. Fluids, 9, 1475.CrossRefGoogle Scholar
Fuenfer, E., Kaufmann, M., Lotz, W., Neuhauser, J., Schramm, G. & Seidel, U. 1975 Nucl. Fusion, 15, 133.CrossRefGoogle Scholar
Grad, H. 1961 Proceedings of Symposium on Electromagnetics and Fluid Dynamüs of Gaseous Plasma. Polytechnic Press, Brooklyn, New York.Google Scholar
Grad, H. 1966 Proceedings of Symposia in Applied Mathematics. American Mathematical Society.Google Scholar
Haas, F. A. & Wesson, J. A. 1966 Phys. Fluids, 9, 2472.CrossRefGoogle Scholar
Hamasaki, S. & Krall, N. A. 1973 Phys. Fluids, 16, 145.CrossRefGoogle Scholar
Hastie, B. J., Taylor, J. B. & Haas, F. A. 1967 Ann. Phys. 41, 302.CrossRefGoogle Scholar
Kadise, A. 1966 Phys. Fluids, 9, 514.CrossRefGoogle Scholar
Kadish, A. 1967 J. Math. Phys. 8, 884.CrossRefGoogle Scholar
Kennel, C. F. & Greene, J. M. 1966 Ann. Phys. 38, 63.CrossRefGoogle Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill.CrossRefGoogle Scholar
Lewis, H. & Turner, L. 1976 a Proceedings of Third Conference on Pulsed High Beta Plasmas, Culham 1975, p. 183.Google Scholar
Lewis, H. R. & Freidberg, J. P. 1972 Proceedings of Fifth European Conference on Controlled Fusion and Plasma Physics, Grenoble.Google Scholar
Lewis, H. R. & Turner, L. 1976 b Nuci. Fusion, 16, 993.CrossRefGoogle Scholar
Liewer, P. C. & Krall, N. A. 1973 Phys. Fluids, 16, 1953.CrossRefGoogle Scholar
Little, E. M., Quinn, W. E. & Sawyer, G. A. 1965 Phys. Fluids, 8, 1168.CrossRefGoogle Scholar
McKenna, K. F., Kristal, R. & Zimmermann, E. L. 1975 Phys. Fluids, 18, 1371.CrossRefGoogle Scholar
McKenna, K. F., Kristal, R. & Thomas, K. S. 1974 Phys. Rev. Lett. 32, 409.CrossRefGoogle Scholar
Montgomery, D. C. & Tidman, D. A. 1964 Plasma Kinetic Theory. McGraw-Hill.Google Scholar
Morse, R. L. & Freiderg, J. P. 1970 Phys. Fluids, 13, 531.CrossRefGoogle Scholar
Oktay, E. 1974 Phys. Fluids, 17, 2.CrossRefGoogle Scholar
Ossakow, S., Ott, E. & Haber, I. 1972 Phys. Fluids, 15, 2314.CrossRefGoogle Scholar
Pao, Y. P. 1974 Nucl. Fusion, 14, 25.CrossRefGoogle Scholar
Rosenbluth, M. & Simon, A. 1965 Phys. Fluids, 8, 1300.CrossRefGoogle Scholar
Rutherford, P. H. & Frieman, E. A. 1968 Phys. Fluids, 11, 3.Google Scholar
Tataronis, J., Grossmann, W. & Choe, J. 1974 Bull. Amer. Phys. Soc. 19, 970.Google Scholar
Taylor, J. B. & Hastie, R. J. 1968 Plasma Phys. 10, 479.CrossRefGoogle Scholar
TurnerR, L. R, L. 1977 Phys. Fluids, 20, 654.CrossRefGoogle Scholar
Valanejad, E. & Greene, J. M. 1967 Ann. Phys. 41, 492.CrossRefGoogle Scholar
Weitzner, H. 1976 Phys. Fluids, 19, 420.CrossRefGoogle Scholar