Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T14:25:50.942Z Has data issue: false hasContentIssue false

High-speed imaging of dust particles in plasma

Published online by Cambridge University Press:  19 November 2012

C. M. TICOŞ
Affiliation:
National Institute for Research and Development in Microtechnologies, Bucharest 077190, Romania ([email protected]) National Institute for Laser, Plasma and Radiation Physics, Bucharest 077125, Romania
D. TOADER
Affiliation:
National Institute for Laser, Plasma and Radiation Physics, Bucharest 077125, Romania
M. L. MUNTEANU
Affiliation:
National Institute for Laser, Plasma and Radiation Physics, Bucharest 077125, Romania
N. BANU
Affiliation:
National Institute for Laser, Plasma and Radiation Physics, Bucharest 077125, Romania
A. SCURTU
Affiliation:
National Institute for Laser, Plasma and Radiation Physics, Bucharest 077125, Romania

Abstract

High-speed imaging is a powerful tool for studying dusty plasmas. The recorded trajectories of dust particles can provide direct information about the physical processes involved in dust-plasma and dust–dust interactions. A review of some experiments and their imaging techniques employed for tracking dust particles immersed in low-ionized gases and in high-density plasma jets is presented. Digital cameras are used to record the motion of slow or hypervelocity dust particles dragged by plasma jets, or to evidence single or collective dust particle oscillations and vibrations in the plasma sheath.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261304.CrossRefGoogle Scholar
Arp, O., Block, D., Piel, A. and Melzer, A. 2004 Dust coulomb balls: three-dimensional plasma crystals. Phys. Rev. Lett. 93 (16), 165004–1/4.CrossRefGoogle ScholarPubMed
Barkan, A, Merlino, R. L. and D'Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2 (10), 35633565.CrossRefGoogle Scholar
Barnes, M. S., Keller, J. H., Forster, J. C., O'Neill, J. A. and Coultas, D. K. 1992 Transport of dust particles in glow-discharge plasmas. Phys. Rev. Lett. 68 (3), 313316.CrossRefGoogle ScholarPubMed
Block, D. and Melzer, A. 2010 Imaging diagnostics in dusty plasmas. In: Introduction to Complex Plasmas (ed. Bonitz, M., Horing, N. and Ludwig, P.). New York: Springer, pp. 135153.CrossRefGoogle Scholar
Boyle, W. S. and Smith, G. E. 1970 Charged coupled semiconductor devices. Bell Syst. Tech. J. 49 (4), 587593.CrossRefGoogle Scholar
Cavarroc, M., Mikikian, M., Tessier, Y. and Boufendi, L. 2008 Instabilities during the growth of dust successive generations in silane-based plasmas. Phys. Plasmas 15 (10), 103704–1/9.CrossRefGoogle Scholar
Chu, J. H., Du, J.-B. and Lin, I. 1994 Coulomb solids and low-frequency fluctuations in RF dusty plasmas. J. Phys. D: Appl. Phys. 27 (2), 296300.CrossRefGoogle Scholar
Chu, J. H. and Lin, I. 1994 Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas. Phys. Rev. Lett. 72 (25), 40094012.CrossRefGoogle ScholarPubMed
Feng, Y., Goree, J. and Bin, L. 2007 Accurate particle position measurement from images. Rev. Sci. Instrum. 78 (5), 053704–1/10.CrossRefGoogle ScholarPubMed
Flanagan, T. M. and Goree, J. 2010 Observation of the spatial grow of self-excited dust-density waves. Phys. Plasmas 17 (12), 123702–1/9.CrossRefGoogle Scholar
Fortov, V. E., Nefedov, A. P., Torchinski, V. M., Molotkov, V. I., Khrapak, A. G., Petrov, O. F. and Volykhin, K. F. 1996 Crystallization of a dusty plasma in the positive column of a glow discharge. J. Exp. Theor. Phys. 64 (2), 8691.Google Scholar
Graßmann, A. and Peters, F. 2004 Size measurement of very small spherical particles by MIE scattering imaging (MSI). Part. Part. Syst. Charact. 21, 374389.CrossRefGoogle Scholar
Harvey, P., Durniak, C., Samsonov, D. and Morfill, G. 2010 Soliton interaction in a complex plasma. Phys. Rev. E 81 (5), 057401–1/4.CrossRefGoogle Scholar
Hayashi, Y. 1999 Structure of a three-dimensional Coulomb crystal in a fine-particle plasma. Phys. Rev. Lett. 83 (23), 47644767.CrossRefGoogle Scholar
Heinrich, J., Kim, S.-H. and Merlino, R. L. 2009 Laboratory observations of self-excited dust acoustic shocks. Phys. Rev. Lett. 103 (11), 115002–1/4.CrossRefGoogle ScholarPubMed
Himpel, M., Buttenschön, B. and Melzer, A. 2011 Three-view stereoscopy in dusty plasmas under microgravity: a calibration and reconstruction approach. Rev. Sci. Instrum. 82 (5), 053706–1/9.CrossRefGoogle ScholarPubMed
Hutchinson, I. H. 2005 Ion collection by a sphere in a flowing plasma: 3. Floating potential and drag force. Plasma Phys. Control. Fusion 47 (1), 7187.CrossRefGoogle Scholar
Ikezi, H. 1986 Coulomb solid of small particles in plasma. Phys. Fluids 29, 17641766.CrossRefGoogle Scholar
Kennedy, R. V. and Allen, J. E. 2003 The floating potential of spherical probes and dust grains. ii: Orbital motion theory. J. Plasma Phys. 69 (6), 485506.CrossRefGoogle Scholar
Khrapak, S. A., Ivlev, A., Morfill, G. E. and Thomas, H. M. 2002 Ion drag in complex plasmas. Phys. Rev. E 66 (4), 046414–1/4.CrossRefGoogle ScholarPubMed
Kong, J., Hyde, T. W., Matthews, L., Qiao, K., Zhang, Z. and Douglass, A. 2011 One-dimensional vertical dust strings in a glass box. Phys. Plasmas 84 (1), 016411–1/7.Google Scholar
Kurimoto, Y., Matsuda, N., Uchida, G., Iizuka, S., Suemitsu, M. and Sato, N. 2004 Fine particle removal by a negatively charged fine particle collector in silane plasma. Thin Solid Films 457 (2), 285291.CrossRefGoogle Scholar
Lapenta, G. 2002 Nature of the force field in plasma wakes. Phyis. Rev. E 66 (2), 026409–1/4.CrossRefGoogle ScholarPubMed
Law, D. A., Steel, W. H., Annaratone, B. M. and Allen, J. E. 1998 Probe-induced particle circulation in a plasma crystal. Phys. Rev. Lett. 80 (19), 41894192.CrossRefGoogle Scholar
Layden, B., Couëdel, L., Samarian, A. A. and Boufendi, L. 2011 Residual dust charges in a complex plasma afterglow. IEEE Trans. Plasma Sci. 39 (11), 27642765.CrossRefGoogle Scholar
Lindken, R., Westerweel, J. and Wieneke, B. 2006 Stereoscopic micro particle image velocimetry. Exp. Fluids 41 (2), 161171.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2011 Discoveries of waves in dusty plasmas. J. Plasma Phys. 77 (4), 437455.CrossRefGoogle Scholar
Melzer, A. 2001 Laser manipulation of particles in dusty plasmas. Plasma Sources Sci. Technol. 10 (2), 303310.CrossRefGoogle Scholar
Melzer, A., Homann, A. and Piel, A. 1996 Experimental investigation of the melting transition of the plasma crystal. Phys. Rev. E 53 (3), 27572766.CrossRefGoogle ScholarPubMed
Merlino, R. L., Barkan, A., Thompson, C. and D'Angelo, N. 1997 Experiments on waves and instabilities in dusty plasmas. Plasma Phys. Control. Fusion 39, A421429.CrossRefGoogle Scholar
Nichols, J.et al. 2011 3-D reconstruction of pre-characterized lithium and tungsten dust particle trajectories in NSTX. J. Nucl. Mater. 415, S1098–S1101.CrossRefGoogle Scholar
Oxtoby, N. P., Ralph, J. F., Durniak, C. and Samsonov, D. 2012 Tracking shocked dust: state estimation for a complex plasma during a shock wave. Phys. Plasmas 19 (1), 013708–1/10.CrossRefGoogle Scholar
Piel, A., Arp, O. and Klindworth, M. 2008 Obliquely propagating dust-density waves. Phys. Rev. E 77 (2), 026407–1/7.CrossRefGoogle ScholarPubMed
Pieper, J. B., Goree, J. and Quinn, R. A. 1996 Experimental studies of two-dimensional and three-dimensional structure in a crystallized dusty plasma. J. Vac. Sci. Technol. 14, 519524.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38 (4), 543546.CrossRefGoogle Scholar
Roquemore, A. L., Nishino, N., Skinner, C. H., Bush, C., Kaita, R., Maqueda, R., Davis, W., Pigarov, S. H., Yu, A. and Krasheninnikov, S. I. 2007 3D measurements of mobile dust particle trajectories in NSTX. J. Nucl. Mater. 363–365, 222226.CrossRefGoogle Scholar
Rosenberg, M. 1996 Ion dust streaming instability in processing plasmas. J. Vac. Sci. Technol. A 14 (2), 631633.CrossRefGoogle Scholar
Rudakov, D. L.et al. 2008 Dust measurements in tokamaks. Rev. Sci. Instrum. 79 (10), 10F303–1/6.CrossRefGoogle ScholarPubMed
Samarian, A. A., James, B. W., Vladimirov, S. V. and Cramer, N. F. 2001 Self-excited vertical oscillations in an RF-discharge dusty plasma. Phys. Rev. E 64 (2), 025402(R)–1/4.CrossRefGoogle Scholar
Samarian, A. A., Vladimirov, S. V. and James, B. W. 2005 Dust particle alignments and confinement in a radio frequency sheath. Phy. Plasmas 12 (2), 022103–1/6.CrossRefGoogle Scholar
Samsonov, D., Goree, J., Thomas, H. M. and Morfill, G. E. 2000 Mach cone shocks in a two-dimensional Yukawa solid using a complex plasma. Phys. Review E 6 (5), 55575572.CrossRefGoogle Scholar
Schill, R. A. Jr., 2002 A simplistic plasma dust removal model employing radiation pressure. Laser Part. Beams 20 (2), 341357.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2011 Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83 (3), 885906.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction. In: Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics, pp. 135.CrossRefGoogle Scholar
Sütterlin, K. R.et al. 2009 Dynamics of lane formation in driven binary complex plasmas. Phys. Rev. Lett. 102 (8), 085003–1/4.CrossRefGoogle ScholarPubMed
Thomas, E. Jr., 2001 Observations of high speed particle streams in dc glow discharge dusty plasmas. Phys. Plasmas 8 (1), 329333.CrossRefGoogle Scholar
Thomas, H. M. and Morfill, G. 1997 The processes involved in the solid to liquid phase transition. Endeavour 21 (4), 148153.CrossRefGoogle Scholar
Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacher, B. and Möhlmann, D. 1994 Plasma crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73 (5), 652655.CrossRefGoogle Scholar
Thomas, E. Jr. and Williams, J. 2006 Applications of stereoscopic particle image velocimetry: dust acoustic waves and velocity space distribution functions. Phys. Plasmas 13 (5), 055702–1/6.CrossRefGoogle Scholar
Ticos, C. M., Dyson, A. and Smith, P. W. 2004a The charge on falling dust particles in a RF discharge with DC negative bias. Plasma Sources Sci. Technol. 13 (3), 395402.CrossRefGoogle Scholar
Ticos, C. M., Dyson, A., Smith, P. W. and Shukla, P. K. 2004b Pressure triggered collective oscillations of a dust crystal in a capacitive RF plasma. Plasma Phys. Control. Fusion 46, B293299.CrossRefGoogle Scholar
Ticos, C. M., Jepu, I., Lungu, C. P., Chiru, P., Zaroschi, V. and Lungu, A. M. 2010a Levitated dust particles subjected to plasma jet. J. Plasma Phy. 76 (3–4), 501511.CrossRefGoogle Scholar
Ticos, C. M., Jepu, I., Lungu, C. P., Chiru, P., Zaroschi, V. and Lungu, A. M. 2010b Removal of floating dust in glow discharge using plasma jet. Appl. Phys. Lett. 97 (1), 011501–1/3.CrossRefGoogle Scholar
Ticos, C. M., Smith, P. W. and Shukla, P. K. 2003 Experimental wake-induced oscillations of dust particles in a RF plasma.. Phys. Lett. A 319, 504509.CrossRefGoogle Scholar
Ticos, C. M., Smith, P. W. and Shukla, P. K. 2004c Oscillations of dust particles due to wake fields: an experimental demonstration. Phys. Scr. T107, 117120.CrossRefGoogle Scholar
Ticos, C. M., Wang, Z., Delzanno, G. L. and Lapenta, G. 2006a Plasma dragged microparticles as a method to measure plasma flows. Phys. Plasmas 10 (3), 103501–1/10.CrossRefGoogle Scholar
Ticos, C. M., Wang, Z., Dorf, L. A. and Wurden, G. A. 2006b A plasma dynamic hypervelocity dust injector for the national spherical torus experiment. Rev. Sci. Instrum. 77 (10), 10E304–1/3.CrossRefGoogle Scholar
Ticos, C. M., Wang, Z. and Wurden, G. A. 2011 Observation of the evolution of supersonic plasma jet launched by a coaxial gun. IEEE Trans. Plasma Sci. 39 (11), 23882389.CrossRefGoogle Scholar
Ticos, C., Wang, Z., Wurden, G. A., Kline, J. L. and Montgomery, D. S. 2008a Plasma jet acceleration of dust particles to hypervelocities. Phys. Plasmas 15 (10), 103701–1/9.CrossRefGoogle Scholar
Ticos, C. M., Wang, Z., Wurden, G. A., Kline, J. L., Montgomery, D. S., Dorf, L. A. and Shukla, P. K. 2008b Plasma drag acceleration of a dust cloud to hypervelocities. Phys. Rev. Lett. 100 (15), 155002–1/4.CrossRefGoogle ScholarPubMed
Trottenberg, T., Melzer, A. and Piel, A. 1995 Measurement of the electric charge on particulates forming Coulomb crystals in the sheath of a radio-frequency plasma. Plasma Sources Sci. Technol. 4 (3), 450458.CrossRefGoogle Scholar
Uchida, G., Iizuka, S. and Sato, N. 2009 Liquid-crystal phase transition by electron shower in a direct current complex plasma. Phys. Plasmas 16 (8), 083707–1/6.CrossRefGoogle Scholar
Wang, Z., Ticos, C. M., Dorf, L. A. and Wurden, G. A. 2006 Micro-particle probes for laboratory plasmas. IEEE Trans. Plasma Sci. 34 (232), 111222.Google Scholar
Wang, Z., Ticos, C. M. and Wurden, G. A. 2007 Dust trajectories and applications in plasmas beyond strongly coupled laboratory dusty plasmas. Phys. Plasmas 14 (10), 103701–1/11.CrossRefGoogle Scholar
Willert, C. E. and Gharib, M. 1991 Digital particle image velocimetry. Exp. Fluids 10 (4), 181193.CrossRefGoogle Scholar
Williams, J. D. 2011 Application of tomographic particle image velocimetry to studies of transport in complex (dusty) plasma. Phy. Plasmas 18 (5), 050702–1/4.CrossRefGoogle Scholar
Williams, J. D. and Thomas, E. D. Jr., 2007 Measurement of the kinetic dust temperature of a weakly coupled dusty plasma. Phys. Plasmas 14 (6), 063702–1/8.CrossRefGoogle Scholar