Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T13:12:46.906Z Has data issue: false hasContentIssue false

High-informative version of nonlinear transformation of Langmuir waves to electromagnetic waves

Published online by Cambridge University Press:  13 December 2013

Vasily I. Erofeev*
Affiliation:
Laboratory of Nonlinear Physics, Institute of Automation & Electrometry, Russian Academy of Sciences, 1 Koptyug Prosp., Novosibirsk, 630090, Russia Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
*
Email address for correspondence: [email protected]

Abstract

The concept of informativeness of nonlinear plasma physical scenario is discussed. Basic principles for heightening the informativeness of plasma kinetic models are explained. Former high-informative correlation analysis of plasma kinetics (Erofeev, V. 2011 High-Informative Plasma Theory, Saarbrücken: LAP) is generalized for studies of weakly turbulent plasmas that contain fields of solenoidal plasma waves apart from former potential ones. Respective machinery of plasma kinetic modeling is applied to an analysis of fusion of Langmuir waves with transformation to electromagnetic waves. It is shown that the customary version of this phenomenon (Terashima, Y. and Yajima, N. 1963 Prog. Theor. Phys. 30, 443; Akhiezer, I. A., Danelia, I. A. and Tsintsadze, N. L. 1964 Sov. Phys. JETP19, 208; Al'tshul', L. M. and Karpman, V. I. 1965 Sov. Phys. JETP20, 1043) substantially distorts the picture of merging of Langmuir waves with long wavelengths (λ ≳ c/ωpe).

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, I. A., Danelia, I. A. and Tsintsadze, N. L. 1964 Theory of transformation and scattering of electromagnetic waves in a nonequilibrium plasma. Sov. Phys. JETP 19, 208.Google Scholar
Al'tshul', L. M. and Karpman, V. I. 1965 The kinetics of waves in a weakly turbulent plasma. Sov. Phys. JETP 20 (4), 10431056.Google Scholar
Balescu, R. 1975 Equilibrium and Nonequilibrium Statistical Mechanics. New York: Wiley–Interscience.Google Scholar
Birmingham, Th. J. and Bornatici, M. 1972 Resonant diffusion in the presence of strong plasma turbulence. Phys. Fluids 15, 17781785.Google Scholar
de Maupertuis, P. L. M. 1744 Accord de différentes lois de la nature Qui avaient jusqu'ici paru incompatibles. Mémoires de l'Academie Royale Des Sciences De Paris. 417–426.Google Scholar
de Maupertuis, P. L. M. 1746 Le lois de mouvement et du repos, déduites d'un principe de métaphysique. Histoire de l'Académie Royale des Sciences et des Belles Lettres. 267–294.Google Scholar
Doolen, G. D., DuBois, D. F. and Rose, H. A. 1985 Nucleation of cavitons in strong Langmuir turbulence. Phys. Rev. Lett. 54, 804807.Google Scholar
DuBois, D. F., Rose, H. A. and Russel, D. 1988 Power spectra of fluctuations in strong Langmuir turbulence. Phys. Rev. Lett. 61, 22092212.Google Scholar
Dupree, T. H. 1963 Kinetic theory of plasma and the electromagnetic field. Phys. Fluids 6, 17141729.Google Scholar
Dupree, T. H. 1966 A perturbation theory for strong plasma turbulence. Phys. Fluids 9, 17731782.CrossRefGoogle Scholar
Erofeev, V. I. 1997 Derivation of an equation for three-wave interactions based on the Klimontovich–Dupree equation. J. Plasma Phys. 57 (2), 273298.CrossRefGoogle Scholar
Erofeev, V. I. 1998 Weak plasma turbulence theory and some other items of plasma kinetics. Aust. J. Phys. 51 (5), 843857.CrossRefGoogle Scholar
Erofeev, V. I. 2000 Langmuir wave scattering induced by electrons in a single collisionless plasma. J. Fusion Energy 19 (2), 99113.Google Scholar
Erofeev, V. I. 2002 Collisionless dissipation of Langmuir turbulence. Phys. Plasmas 9 (4), 11371149.Google Scholar
Erofeev, V. I. 2003 Influence of Langmuir turbulence on plasma electron distribution during the induced wave scattering. J. Fusion Energy 22 (4), 259275.Google Scholar
Erofeev, V. I. 2004a Derivation of an evolution equation for two-time correlation function. J. Plasma Phys. 70 (3), 251270.CrossRefGoogle Scholar
Erofeev, V. I. 2004b Impossibility of Vedenov–Rudakov's plasma modulational instability as one more illustration of the inappropriateness of the recipes of nonequilibrium statistical mechanics. Phys. Plasmas 11 (6), 32843295.CrossRefGoogle Scholar
Erofeev, V. I. 2009 Key ideas for heightening the informativeness of plasma physical theorizing. J. Plasma Fusion Res. Ser. 8, 5964.Google Scholar
Erofeev, V. I. 2010 Thermalization of Langmuir wave energy via the stochastic plasma electron acceleration. J. Fusion Energy 29, 337346.Google Scholar
Erofeev, V. 2011a High-Informative Plasma Theory. Saarbrücken: LAP.Google Scholar
Erofeev, V. I. 2011b A decay of Langmuir wave quanta in their scatter by plasma electrons. J. Fusion Energy 30, 157168.CrossRefGoogle Scholar
Erofeev, V. I. 2011c High-informative theorizing in plasma physics: basic principles and importance for researches on beam-plasma heating, plasma confinement and transport phenomena. Trans. Fusion Sci. Technol. 59 (1T), 316319.Google Scholar
Euler, L. 1744 Methodus Inveniendi Lineas Curvas Maximi Minive Proprietate Gaudentes. Lausanne/Geneva: Bousquet.Google Scholar
Galeev, A. A. and Karpman, V. N. 1963 A turbulent theory of weakly unequilibrium plasma and the structure of shock waves. Sov. Phys. JETP 17, 403.Google Scholar
Gibbs, J. W. 1902 Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics. New York: Yale University Press.Google Scholar
Ginzburg, V. L. and Zhelezniakov, V. V. 1958 Concerning the possible mechanisms of sporadic radio emission of the sun (emission of an isotropic plasma). Sov. Astron. 2, 653667.Google Scholar
Goldman, M. V. 1983 Strong turbulence of plasma waves. Sol. Phys. 89, 403442.Google Scholar
Gupta, M. R. 1974 Diffusion of resonance particles in strong plasma turbulence. J. Plasma Phys. 12, 279286.Google Scholar
Hamilton, W. R. 1834 On a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function. Philos. Trans. R. Soc. of London 124 (II), 247308.Google Scholar
Hamilton, W. R. 1835 Second essay on a general method in dynamics. Phil. Trans. R. Soc. of London 125 (I)95144.Google Scholar
Hasegawa, A. and Mima, K. 1977 Stationary spectrum of strong turbulence in magnetized nonuniform plasma. Phys. Rev. Lett. 39, 205208.Google Scholar
Ichimaru, S. 1970 Theory of strong turbulence in plasmas. Phys. Fluids 13, 1560.Google Scholar
Itoh, Sanae-I and Itoh, K. 1999a Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas. i. J. Phys. Soc. Japan 68 (6), 18911906.Google Scholar
Itoh, Sanae-I and Itoh, K. 1999b Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas. ii. J. Phys. Soc. Japan 68 (8), 26112625.CrossRefGoogle Scholar
Itoh, Sanae-I and Itoh, K. 2000a Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas. iii. J. Phys. Soc. Japan 69 (2), 408426.Google Scholar
Itoh, Sanae-I and Itoh, K. 2000b Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas. iv. J. Phys. Soc. Japan 69 (2), 427440.CrossRefGoogle Scholar
Itoh, Sanae-I and Itoh, K. 2000c Statistical theory of subcritically-excited strong turbulence in inhomogeneous plasmas. v. J. Phys. Soc. Japan 69 (10), 32533265.CrossRefGoogle Scholar
Klimontovich, Yu. L. 1967 The Statistical Theory of Nonequilibrium Processes in a Plasma. Cambridge, MA: MIT Press.Google Scholar
Kovrizhnykh, L. M. 1965 On the theory of a turbulent plasma. Sov. Phys. JETP 21 (4), 744755.Google Scholar
Lagrange, J.-L. 1788 Mechanique Analytique. (Chez La Veuve Desaint, Paris).Google Scholar
Nöther, E. 1918 Invariante variationsprobleme. Nachrichen von der Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse 2, 235257.Google Scholar
Okuda, H. 1980 Strong plasma turbulence and anomalous diffusion in a magnetic field. Phys. Fluids 23, 498507.Google Scholar
Orszag, S. A. and Kraichnan, R. H. 1967 Model equations for strong turbulence in a Vlasov plasma. Phys. Fluids 10, 17201736.CrossRefGoogle Scholar
Prigogine, I. 1962 Non-Equilibrium Statistical Mechanics. New York: Wiley-Interscience.Google Scholar
Robinson, P. A. 1997 Nonlinear wave collapse and strong turbulence. Rev. Mod. Phys. 69, 507573.Google Scholar
Robinson, P. A., Newman, D. L. and Goldman, M. V. 1988 Three-dimensional strong Langmuir turbulence and wave collapse. Phys. Rev. Lett. 61, 702705.Google Scholar
Rudakov, L. I. and Tsytovich, V. N. 1971 The theory of plasma turbulence for strong wave-particle interaction. Plasma Phys. 13 (3), 213.Google Scholar
Sagdeev, R. Z. and Galeev, A. A. 1969 Nonlinear Plasma Theory (eds. O'Neil, T. M. and Book, D. L.). New York: Benjamin.Google Scholar
Takahashi, Y. 1957 On the generalized ward identity. Nuovo Cimento (1955–1965) 6 (2), 371375.Google Scholar
Terashima, Y. and Yajima, N. 1963 Radiation by plasma waves in a homogeneous plasma. Prog. Theor. Phys. 30, 443459.Google Scholar
Tsytovich, V. N. 1967 Nonlinear effects in a plasma. Sov. Phys. Uspekhi 9, 805836.Google Scholar
Tsytovich, V. N. 1970 Nonlinear Effects in Plasma. New York: Plenum.Google Scholar
Vlasov, A. A. 1945 On the kinetic theory of an assembly of particles with collective interaction. J. Phys. (U.S.S.R.) 9 (1), 2540.Google Scholar
Ward, J. C. 1950 An identity in quantum electrodynamics. Phys. Rev. 78, 182.CrossRefGoogle Scholar
Weatherall, J. C. and Benford, G. 1991 Coherent radiation from energetic electron streams via collisionless bremsstrahlung in strong plasma turbulence. Astrophys. J. 378, 543549.Google Scholar
Weinstock, J. 1969 Formulation of a statistical theory of strong plasma turbulence. Phys. Fluids 12, 10451058.Google Scholar
Zakharov, V. E. 1972 Collapse of Langmuir waves. Sov. Phys. JETP 35, 908914.Google Scholar
Zhelezniakov, V. V. 1977 Elektromagnitnye volny v kosmlcheskoi plazme [Electromagnetic Waves In the Cosmic Plasma]. Moscow: Nauka (in Russian).Google Scholar