Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T05:26:28.975Z Has data issue: false hasContentIssue false

High-enthalpy, water-cooled and thin-walled ICP sources characterization and MHD optimization

Published online by Cambridge University Press:  01 June 2008

G. HERDRICH
Affiliation:
Institut für Raumfahrtsysteme (IRS), Universität Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany ([email protected]) Steinbeis Transferzentrum Plasma- and Space Technology, c/o Institut für Raumfahrtsysteme (IRS), Universität Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany ([email protected])
D. PETKOW
Affiliation:
Institut für Raumfahrtsysteme (IRS), Universität Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany ([email protected])

Abstract

The development of the inductively driven plasma wind tunnel PWK3, which enables the electrodeless generation of high-enthalpy plasmas for the development of heat shield materials required for space vehicles performing entry manoeuvres in the atmospheres of Venus, Earth and Mars, is described. The facility with its modular inductive plasma generators allows operation with gases such as carbon dioxide, air, oxygen and nitrogen and was qualified for thermal plasma powers up to 60 kW. Previously developed models for determining plasma properties and plasma source related characteristics enable a maximum plasma power in combination with long operational periods using different operational gases and gas mixtures. This is achieved by an optimization using the optimum operational frequency, a minimization of field losses using very thin plasma tube wall thicknesses and the successful application of MHD effects. Based on the solved cylinder problem for ICPs, a one-dimensional model for radial Lorentz forces and magnetic pressure has been developed. Here, a synthesis of previously published data and works is made where the new algebraic model for the calculation of Lorentz forces and magnetic pressures in an ICP was used and applied to experimental data. In addition, results from the model using the experimental data are shown to be consistent and, in addition, a comparison with a simpler model based on the well-known exponential approach for ICPs showed that the simpler model is covered without fail by the new model. The new model also states that there is a maximum of the Lorentz forces over the damping parameter d/δ (plasma diameter divided by skin depth) which almost corresponds with the position of the maximum plasma power of the cylindric model for ICPs. For the magnetic pressure the position of the maximum pressure is identical to the value for d/δ for the maximum plasma power.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Hittorf, W. 1884 Ueber die Electricitaetsleitung der Gase. Ann. Phys. Chem. 21, 90139.CrossRefGoogle Scholar
[2]McKinnan, K. A. 1929 On the origin of the electrodeless discharge. Philos. Mag. J. Sci., Ser. 7 8 (52), 601616.Google Scholar
[3]Herdrich, G., Auweter–Kurtz, M. and Kurtz, H. 2000 New inductively heated plasma source for reentry simulations. J. Thermophys. Heat Transfer 14 (2), 244249.CrossRefGoogle Scholar
[4]Thomson, J. J. 1891 On the discharge of electricity through exhausted tubes without electrodes. Philos. Mag. J. Sci., Ser. 5 32 (197), 321464.CrossRefGoogle Scholar
[5]Herdrich, G. 2004 Aufbau, Qualifikation und Charakterisierung einer induktiv beheizten Plasmawindkanalanlage zur Simulation atmosphärischer Eintrittsmanöver. Dissertation, Institut für Raumfahrtsysteme, Universität Stuttgart, December.Google Scholar
[6]Eckert, H. U. 1984 The hundred year history of induction discharges. Proc. 2nd Annual Int. Conf. of Chemistry and Technology (ed. Boenig, H. V.).Google Scholar
[7]Thomson, J. J. 1927 The electrodeless discharge through gases. Philos. Mag. J. Sci., Ser. 7 4 (25), 11281160.CrossRefGoogle Scholar
[8]Freeman, M. P. and Chase, J. D. 1968 Energy-transfer mechanism and typical operating characteristics for the thermal rf plasma generator. J. Appl. Phys. 39 (1), 180190.CrossRefGoogle Scholar
[9]Eckert, H. U. 1962 Diffusion theory of the electrodeless ring discharge. J. Appl. Phys. 33 (9), 27802788.CrossRefGoogle Scholar
[10]Henrikson, B. B., Keefer, D. R. and Clarkson, M. H. 1971 Electromagnetic field in electrodeless discharge. J. Appl. Phys. 42 (13), 54605464.CrossRefGoogle Scholar
[11]Herdrich, G., Auweter-Kurtz, M., Kurtz, H. L., Laux, T. and Winter, M. 2002 Operational behavior of the inductively heated plasma source IPG3 for re-entry simulations. J. Thermophys. Heat Transfer 16 (3), 440449.CrossRefGoogle Scholar
[12]Boulos, M. I., Gagne, R. and Barnes, R. 1980 Effect of Swirl and confinement on the flow and temperature fields in an inductively coupled r.f. plasma. Can. J. Chem. Eng. 58, 367375.CrossRefGoogle Scholar
[13]Miller, R. C. and Ayen, R. J. 1969 Temperature profiles and energy balances for an inductively coupled plasma torch. J. Appl. Phys. 40 (13), 52605273.CrossRefGoogle Scholar
[14]Eckert, H. U. 1970 Analysis of thermal plasmas dominated by radial conduction losses. J. Appl. Phys. 41 (4), 15201528.CrossRefGoogle Scholar
[15]Pridmore-Brown, D. C. 1970 Numerical study of the inductive electrodeless discharge. J. Appl. Phys. 41 (9), 36213625.CrossRefGoogle Scholar
[16]Barnes, R. M. and Nikdel, S. 1976 Temperature and velocity profiles and energy balances for inductively coupled plasma discharge in nitrogen. J. Appl. Phys. 47 (9), 39293934.CrossRefGoogle Scholar
[17]Mostaghimi, J., Proulx, P. and Boulos, M. I. 1984 Parametric study of the flow and temperature fields in an inductively coupled r.f. plasma torch. Plasma Chem. Plasma Process., 4 (3), 199217.CrossRefGoogle Scholar
[18]McKelliget, J. W. and El-Kaddah, N. 1988 The effect of coil design on material synthesis in an inductively heated plasma torch. J. Appl. Phys. 64 (6), 29482958.CrossRefGoogle Scholar
[19]Yang, P., Barnes, R. M., Mostaghimi, J. and Boulos, M. I. 1989 Application of a two-dimensional model in the simulation of an analytical inductively coupled plasma discharge. Spectrochimica Acta, 44B (7), 657666.CrossRefGoogle Scholar
[20]Gordeev, A. N. 1999 Overview of characteristics and experiments in IPM plasmatrons. RTO AVT/VKI Special Course on Measurement Techniques for High Enthalpy Plasma Flows, RTO EN-1, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium, October.Google Scholar
[21]Kolesnikov, A. F. 1999 Combined measurements and computations of high enthalpy and plasma flows for determination of TPM surface catalycity. RTO AVT/VKI Special Course on Measurement Techniques for High Enthalpy Plasma Flows, RTO EN-1, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium, October.Google Scholar
[22]Bottin, B. 1999 Aerothermodynamic model of an inductively-coupled plasma wind tunnel. Thesis for Docteur en Sciences Appliquées, Université de Liège, Faculté des Sciences Appliquées, von Karman Institute for Fluid Dynamics, Aeronautics/Aerospace Department.Google Scholar
[23]Lenzner, S., Auweter-Kurtz, M., Heiermann, J. and Sleziona, P. C. 2000 Energy partitions in inductively heated plasma sources for re-entry simulations. J. Thermophys. Heat Transfer 14 (3), 388395.CrossRefGoogle Scholar
[24]Mekidéche, M. R. 1993 Contribution à la modélisation numérique de torches de plasma d'induction. Thèse de doctorat, Ecole doctorale sciences pour l'ingénieur de Nantes, October.Google Scholar
[25]Herdrich, G., Auweter-Kurtz, M. and Endlich, P. 2003 Mars entry simulation using the inductively heated plasma generator IPG4. J. Spacecraft Rockets 40 (5), 690694.CrossRefGoogle Scholar
[26]Auweter-Kurtz, M. and Wegmann, Th. 1999 Overview of IRS plasma wind tunnel facilities. RTO AVT/VKI Special Course on Measurement Techniques for High Enthalpy Plasma Flows, RTO EN-8, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium, October.Google Scholar
[27]Pidan, S., Auweter-Kurtz, M., Herdrich, G. and Fertig, M. 2005 Recombination coefficients and spectral emissivity of silicon carbide-based thermal protection materials. Paper AIAA 2004-2274, 37th AIAA Thermophysics Conference, Portland, Oregon, USA, June/July 2004. J. Thermophys. Heat Transfer 19(4), 566–571.Google Scholar
[28]Herdrich, G., Auweter-Kurtz, M., Fertig, M., Löhle, S., Pidan, S. and Laux, T. 2005 Oxidation behaviour of SiC-based thermal protection system materials using newly developed probe techniques. Paper AIAA 2004-2173, 37th AIAA Thermophysics Conference, Portland, Oregon, USA, June/July 2004. J. Spacecraft Rockets 42(5), 817–824.Google Scholar
[29]Matsui, M.1, Komurasaki, K.4, Herdrich, G.2 and Auweter-Kurtz, M.3 2005 Enthalpy measurement in inductive plasma generator flow by laser absorption spectroscopy. 1,4 Department of Advanced Energy, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8562, Japan, 2,3 Institut für Raumfahrtsysteme, Universität Stuttgart. AIAA Journal 43 (9), 20602064.CrossRefGoogle Scholar
[30]Auweter-Kurtz, M., Feigl, M. and Winter, M. 1999 Diagnostic tools for plasma wind tunnels and re-entry vehicles at the IRS. RTO AVT/VKI Special Course on Measurement Techniques for High Enthalpy Plasma Flows, RTO EN-8, von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium, October.Google Scholar
[31]Auweter-Kurtz, M., Fertig, M., Herdrich, G., Laux, T., Schöttle, U., Wegmann, Th., Winter, M. 2003 Entry experiments at IRS – in-flight measurement during atmospheric entries. 53rd Int. Astronautical Congress, Houston, TX, USA, October 2002. Space Technol. Journal 23 (4)217234.Google Scholar
[32]Herdrich, G. and Auweter-Kurtz, M. 2006 Inductively heated plasma sources for technical applications Vacuum J., 80 11381143.CrossRefGoogle Scholar
[33]Karrer, N., Hofer-Noser, P., Herdrich, G. and Auweter-Kurtz, M. 2003 Isolated current probe for continuous monitoring of AC currents of high amplitude and high frequency. 10th European Conference on Power Electronics and Applications, Toulouse, France, 2–4 September.Google Scholar
[34]Simpson, P. G. 1960 Induction Heating—Coil and System Design. New York: McGraw-Hill.Google Scholar
[35]Sleziona, P. C. 1992 Numerische Analyse der Strömungsvorgänge in magnetoplasmadynamischen Raumfahrtantrieben. Dissertation, Institut für Raumfahrtsysteme, Universität Stuttgart.Google Scholar
[36]Bykova, N. G., Vasil'evskii, S. A., Gordeev, A. N., Kolesnikov, A. F., Pershin, I. S. and Yakushin, M. I. 1997 Determination of the effective probabilities of catalytic reactions on the surfaces of heat shield materials in dissociated carbon dioxide flows. J. Fluid Dynam. 32 (6), 876886.CrossRefGoogle Scholar
[37]Herdrich, G., Auweter-Kurtz, M., Fertig, M., Nawaz, A. and Petkow, D. 2006 MHD flow control for plasma technology applications Vacuum J., 80, 11671173.CrossRefGoogle Scholar
[38]Raizer, Y. P. 1991 Gas Discharge Physics. Berlin: Springer.CrossRefGoogle Scholar
[39]Löhle, S. 2006 Untersuchung von Wiedereintrittsplasmen mit Hilfe laserinduzierten Fluoreszenzmessungen. Göttingen: Sierke.Google Scholar
[40]Pidan, S., Auweter-Kurtz, M., Herdrich, G. and Fertig, M. 2005 Recombination coefficients and spectral emissivity of silicon carbide-based thermal protection materials. Paper AIAA 2004-2274, 37th AIAA Thermophysics Conference, Portland, Oregon, USA, June/July 2004. J. Thermophys. Heat Transfer 19(4), 566–571.Google Scholar
[41]Herdrich, G., Auweter-Kurtz, M., Fertig, M., Fischer, W., Muylaert, J.-M., Pidan, S., Schüßler, M. and Trabandt, U. 2006 Catalysis of TPS Materials for EXPERT TPS design and catalysis based in-flight instrumentations. European Workshop on Thermal Protection Systems and Hot Structures, May 2006, Noordwijk, The Netherlands, European Space Agency.Google Scholar
[42]Watson, G. N. 1958 A Treatise on the Theory of Bessel Functions, 2nd edn.Cambridge: Cambridge University Press.Google Scholar