Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T00:17:42.807Z Has data issue: false hasContentIssue false

Hamiltonian reduction of Vlasov–Maxwell to a dark slow manifold

Published online by Cambridge University Press:  08 June 2021

George Miloshevich*
Affiliation:
École Normale Supérieure de Lyon, Laboratoire de Physique, 46, allée d'Italie, F-69364Lyon CEDEX 07, France
Joshua W. Burby
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM87545, USA
*
Email address for correspondence: [email protected]

Abstract

We show that non-relativistic scaling of the collisionless Vlasov–Maxwell system implies the existence of a formal invariant slow manifold in the infinite-dimensional Vlasov–Maxwell phase space. Vlasov–Maxwell dynamics restricted to the slow manifold recovers the Vlasov–Poisson and Vlasov–Darwin models as low-order approximations, and provides higher-order corrections to the Vlasov–Darwin model more generally. The slow manifold may be interpreted to all orders in perturbation theory as a collection of formal Vlasov–Maxwell solutions that do not excite light waves, and are therefore ‘dark’. We provide a heuristic lower bound for the time interval over which Vlasov–Maxwell solutions initialized optimally near the slow manifold remain dark. We also show how the dynamics on the slow manifold naturally inherits a Hamiltonian structure from the underlying system. After expressing this structure in a simple form, we use it to identify a manifestly Hamiltonian correction to the Vlasov–Darwin model. The derivation of higher-order terms is reduced to computing the corrections of the system Hamiltonian restricted to the slow manifold.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham, R. & Marsden, J.E. 2008 Foundations of Mechanics. AMS Chelsea Publishing. American Mathematical Soc.Google Scholar
Asano, K. & Ukai, S. 1986 On the Vlasov–Poisson limit of the Vlasov–Maxwell equation. In Studies in Mathematics and Its Applications (ed. J.L. Lions, G. Papanicolaou, H. Fujita & H.B. Keller), vol. 18, chap. 12, pp. 369–383. North-Holland.CrossRefGoogle Scholar
Bekefi, G. 1966 Radiation Processes in Plasmas. John Wiley Sons, Inc.Google Scholar
Brizard, A.J. & Chandre, C. 2020 Hamiltonian formulations for perturbed dissipationless plasma equations. Phys. Plasmas 27, 122111.CrossRefGoogle Scholar
Burby, J.W. 2015 Chasing Hamiltonian structure in gyrokinetic theory, arXiv:1509.04551.Google Scholar
Burby, J.W. 2017 a Finite-dimensional collisionless kinetic theory. Phys. Plasmas 24, 032101.CrossRefGoogle Scholar
Burby, J.W. 2017 b Magnetohydrodynamic motion of a two-fluid plasma. Phys. Plasmas 24 (8), 082104.CrossRefGoogle Scholar
Burby, J.W. 2020 a Guiding center dynamics as motion on a formal slow manifold in loop space. J. Math. Phys. 61 (1), 012703.CrossRefGoogle Scholar
Burby, J.W. 2020 b Slow manifold reduction for plasma science. Commun. Nonlinear Sci. Numer. Simul. 89, 105289.CrossRefGoogle Scholar
Cary, J.R. & Brizard, A.J. 2009 Hamiltonian theory of guiding-center motion. Rev. Mod. Phys. 81, 693738.CrossRefGoogle Scholar
Chandre, C. 2013 Casimir invariants and the Jacobi identity in Dirac's theory of constrained Hamiltonian systems. J. Phys. A 46, 375201.CrossRefGoogle Scholar
Chen, G. & Chacón, L. 2015 A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov–Darwin particle-in-cell algorithm. Comput. Phys. Commun. 197, 7387.CrossRefGoogle Scholar
Cotter, C.J. & Reich, S. 2004 Adiabatic invariance and applications: from molecular dynamics to numerical weather prediction. BIT Numer. Math. 44, 439455.CrossRefGoogle Scholar
Courant, R. & Hilbert, D. 1953 Methods of Mathematical Physics, 1st edn, vol. 1. Interscience Publishers, Inc.Google Scholar
da Silva, A.C. 2008 Lectures on Symplectic Geometry. Lecture Notes in Mathematics. Springer.CrossRefGoogle Scholar
Degond, P. 1986 Local existence of solutions of the Vlasov–Maxwell equations and convergence to the Vlasov–Poisson equations for infinite light velocity. Math. Meth. Appl. Sci. 8 (4), 533558.CrossRefGoogle Scholar
Degond, P., Deluzet, F. & Doyen, D. 2017 Asymptotic-preserving particle-in-cell methods for the Vlasov–Maxwell system in the quasi-neutral limit. J. Comput. Phys. 330, 467492.CrossRefGoogle Scholar
Degond, P. & Raviart, P.-A. 1992 An analysis of the Darwin model of approximation to Maxwell's equations. Forum Math. 4, 1344.CrossRefGoogle Scholar
Eremin, D., Hemke, T., Brinkmann, R.P. & Mussenbrock, T. 2013 Simulations of electromagnetic effects in high-frequency capacitively coupled discharges using the Darwin approximation. J. Phys. D: Appl. Phys. 46 (8), 084017.CrossRefGoogle Scholar
Fenichel, N. 1979 Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31 (1), 5398.CrossRefGoogle Scholar
Han-Kwan, D., Nguyen, T.T. & Rousset, F. 2018 Long time estimates for the Vlasov–Maxwell system in the non-relativistic limit. Commun. Math. Phys. 363 (2), 389434.CrossRefGoogle Scholar
Heninger, J.M. & Morrison, P.J. 2018 An integral transform technique for kinetic systems with collisions. Phys. Plasmas 25 (8), 082118.CrossRefGoogle Scholar
Holm, D.D., Marsden, J.E. & Ratiu, T.S. 1998 The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Maths 137 (1), 181.CrossRefGoogle Scholar
José, J.V. & Saletan, E.J. 1998 Classical Dynamics: A Contemporary Approach. Cambridge University Press.CrossRefGoogle Scholar
Krause, T.B., Apte, A. & Morrison, P.J. 2007 A unified approach to the Darwin approximation. Phys. Plasmas 14 (10), 102112.CrossRefGoogle Scholar
Krauss, M., Kormann, K., Morrison, P.J. & Sonnendrücker, E. 2017 Gempic: geometric electromagnetic particle-in-cell methods. J. Plasma Phys. 83 (4).Google Scholar
Kristiansen, K.U. & Wulff, C. 2016 Exponential estimates of symplectic slow manifolds. J. Differ. Equ. 261 (1), 56101.CrossRefGoogle Scholar
Lang, S. 1995 Differential and Riemannian Manifolds. Springer.CrossRefGoogle Scholar
Lorenz, E.N. 1986 On the existence of a slow manifold. J. Atmos. Sci. 43 (15), 15471558.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E.N. 1992 The slow manifold—what is it? J. Atmos. Sci. 49 (24), 24492451.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E.N. & Krishnamurthy, V. 1987 On the nonexistence of a slow manifold. J. Atmos. Sci. 44 (20), 29402950.2.0.CO;2>CrossRefGoogle Scholar
MacKay, R.S. 2004 Slow Manifolds, vol. 22, chap. 3, pp. 149–192. World Scientific Publishing Co. Pte. Ltd.CrossRefGoogle Scholar
MacKay, R.S. 2020 Differential forms for plasma physics. J. Plasma Phys. 86 (1), 925860101.CrossRefGoogle Scholar
Marsden, J.E. & Ratiu, T.S. 1999 Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, 2nd edn, Texts in Applied Mathematics, vol. 17. Springer.CrossRefGoogle Scholar
Marsden, J.E. & Weinstein, A. 1982 The Hamiltonian structure of the Maxwell–Vlasov equations. Physica D 4, 394406.CrossRefGoogle Scholar
Morrison, P.J. 1980 The Maxwell–Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 80 (5), 383386.CrossRefGoogle Scholar
Morrison, P.J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467521.CrossRefGoogle Scholar
Roberts, A.J. 2015 Model Emergent Dynamics in Complex Systems. Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics.Google Scholar
Schaeffer, J. 1986 The classical limit of the relativistic Vlasov–Maxwell system. Commun. Math. Phys. 104, 403421.CrossRefGoogle Scholar
Sniatycki, J. 1974 Dirac brackets in geometric dynamics. Ann. Inst. Henri Poincaré 20, 365372.Google Scholar
Van Kampen, N.G. 1985 Elimination of fast variables. Phys. Rep. 124 (2), 69160.CrossRefGoogle Scholar
Zhang, J.X.J. & Hoshino, K. 2014 Chapter 7 – implantable sensors. In Molecular Sensors and Nanodevices, pp. 415–465. William Andrew Publishing.CrossRefGoogle Scholar