Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T00:48:27.812Z Has data issue: false hasContentIssue false

Guiding-center recursive Vlasov and Lie-transform methods in plasma physics

Published online by Cambridge University Press:  01 October 2009

A. J. BRIZARD
Affiliation:
Department of Physics, Saint Michael's College, Colchester, VT 05439, USA ([email protected])
A. MISHCHENKO
Affiliation:
Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-17491, Greifswald, Germany

Abstract

The gyrocenter phase-space transformation used to describe nonlinear gyrokinetic theory is rediscovered by a recursive solution of the Hamiltonian dynamics associated with the perturbed guiding-center Vlasov operator. The present work clarifies the relation between the derivation of the gyrocenter phase-space coordinates by the guiding-center recursive Vlasov method and the method of Lie-transform phase-space transformations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Brizard, A. J. 2000 New variational principle for the Vlasov–Maxwell equations. Phys. Rev. Lett. 84, 57685771.CrossRefGoogle ScholarPubMed
[2]Brizard, A. J. 2000 Variational principle for nonlinear gyrokinetic Vlasov–Maxwell equations. Phys. Plasmas 7, 48164822.CrossRefGoogle Scholar
[3]Brizard, A. J. and Hahm, T. S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421468.CrossRefGoogle Scholar
[4]Catto, P. J. 1978 Linearized gyrokinetics. Plasma Phys. 20, 719722.CrossRefGoogle Scholar
[5]Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic Press, New York.Google Scholar
[6]Dimits, A. M., LoDestro, L. L. and Dubin, D. H. E. 1992 Gyroaveraged equations for both the gyrokinetic and drift-kinetic regimes. Phys. Fluids B 4, 274277.CrossRefGoogle Scholar
[7]Dubin, D. H. E., Krommes, J. A., Oberman, C. and Lee, W. W. 1983 Nonlinear gyrokinetic equations. Phys. Fluids 26, 35243535.CrossRefGoogle Scholar
[8]Frieman, E. A. and Chen, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25, 502508.CrossRefGoogle Scholar
[9]Hastie, R. J., Taylor, J. B. and Haas, F. A. 1967 Adiabatic invariants and the equilibrium of magnetically trapped particles. Ann. Phys. (NY) 41, 302338.CrossRefGoogle Scholar
[10]Hinton, F. L. and Hazeltine, R. D. 1976 Theory of plasma transport in toroidal confinement systems. Rev. Mod. Phys. 48, 239308.CrossRefGoogle Scholar
[11]Parra, F. I. and Catto, P. J. 2008 Limitations of gyrokinetics on transport time scales. Plasma Phys. Control. Fusion 50, 065014.CrossRefGoogle Scholar
[12]Rutherford, P. H. and Frieman, E. A. 1968 Drift instabilities in general magnetic field configurations. Phys. Fluids 11, 569585.CrossRefGoogle Scholar
[13]Taylor, J. B. 1967 Magnetic moment under short-wave electrostatic perturbations. Phys. Fluids 10, 13571359.CrossRefGoogle Scholar