Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T13:23:24.905Z Has data issue: false hasContentIssue false

Growth rates of bending KdV solitons

Published online by Cambridge University Press:  13 March 2009

E. W. Laedke
Affiliation:
Fachbereich Physik, Universität Essen, D-4300 Essen, F.R., Germany
K. H. Spatschek
Affiliation:
Fachbereich Physik, Universität Essen, D-4300 Essen, F.R., Germany

Abstract

Nonlinear ion-acoustic waves in magnetized plasmas are investigated. In strong magnetic fields they can be described by a Korteweg-de Vries (KdV) type equation. It is shown here that these plane soliton solutions become unstable with respect to bending distortions. Variational principles are derived for the maximum growth rate γ as a function of the transverse wavenumber k of the perturbations. Since the variational principles are formulated in complementary form, the numerical evaluation yields upper and lower bounds for γ. Choosing appropriate test functions and increasing the accuracy of the computations we find very close upper and lower bounds for the γ(k) curve. The results show that the growth rate peaks at a certain value of k and a cut-off kc exists. In the region where the γ(k) curve was not predicted numerically with high accuracy, i.e. near the cut-off, we find very precise analytical estimates. These findings are compared with previous results. For kkc, stability with respect to transverse perturbations is proved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benjamin, T. B. 1972 Proc. Roy. Soc. A 328, 153.Google Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Gardner, C. S., Greene, J. M., Kruskal, M. D. & Miura, R. M. 1967 Phys. Rev. Lett. 19, 1095.CrossRefGoogle Scholar
Ikezi, H., Taylor, R. I. & Baker, R. D. 1970 Phys. Rev. Lett. 25, 11.CrossRefGoogle Scholar
Infeld, E. & Rowlands, G. 1977 Plasma Phys. 19, 343.CrossRefGoogle Scholar
Jeffrey, A. & Kakutani, T. 1970 Ind. U. Math. J. 20, 463.CrossRefGoogle Scholar
Kako, M. & Rowlands, G. 1976 Plasma Phys. 18, 165.CrossRefGoogle Scholar
Katyshev, Y. V. & Makhankov, V. G. 1976 Phys. Lett. A 57, 10.CrossRefGoogle Scholar
Laedke, E. W. & Spatschek, K. H. 1978 Phys. Rev. Lett. 41, 1798.CrossRefGoogle Scholar
Laedke, E. W. & Spatschek, K. H. 1979 J. Math. Phys. 20, 1838.CrossRefGoogle Scholar
Laedke, E. W. & Spatschek, K. H. 1981 a Phys. Rev. Lett. 47, 719.CrossRefGoogle Scholar
Laedke, E. W. & Spatschek, K. H. 1981 b Phys. Lett. A 82, 335.CrossRefGoogle Scholar
Laedke, E. W. & Spatschek, K. H. 1982 J. Math. Phys. 23, 460.CrossRefGoogle Scholar
Makhankov, V. G. 1978 Phys. Rep. 35, 1.CrossRefGoogle Scholar
Spatschek, K. H., Shukla, P. K. & Yu, M. Y. 1975 Phys. Lett. A 54, 419.CrossRefGoogle Scholar
Spatschek, K. H. & Laedke, E. W. 1980 Proceedings of International Conference on Plasma, Physics, Nagoya, vol. 2, p. 154.Google Scholar
Zakharov, V. E. & Kuznetsov, E. A. 1974 Soviet Phys. JETP, 39, 285.Google Scholar
Zakharov, V. E. & Rubenchik, A. M. 1974 Soviet Phys. JETP, 38, 494.Google Scholar