Article contents
The gravitational interchange instability for perpendicular density gradients
Published online by Cambridge University Press: 13 March 2009
Abstract
The analouge of the Reyleigh–Taylor instability (the gravitational interchange mode) for an infinitely conducting, approximately one-dimensional plane plasma slab is examined when the gravitational acceleration g is taken to be perpendicular to the equalibrium density gradient δp0. In contrast with the ‘classical’ situation (where g is aligned with δp0), it is found for a current layer with Magnetic shear that there is no instability threshold equivalent to the ‘classical’ situation (where g is aligned with δp0), it is found for a current layer with magnetic shear that there is no instability threshold equivalent to the Suydam criterion: the mode is unstable for all values of |δp0|. In the weak shear limit the growth rate of the instability is shown to exhibit the familiar (g|δp0|/p0)img; scaling characteristic of the gravitational interchange mode.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1993
References
- 1
- Cited by