Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T07:23:17.908Z Has data issue: false hasContentIssue false

Gravitating–radiative magnetohydrodynamic surface waves

Published online by Cambridge University Press:  27 August 2020

R. Ruby
Affiliation:
Department of Physics, Lahore College for Women University, Lahore54000, Pakistan
Ch. Rozina*
Affiliation:
Department of Physics, Lahore College for Women University, Lahore54000, Pakistan
N. L. Tsintsadze
Affiliation:
Faculty of Exact and Natural Sciences, Andronicashvili Institute of Physics, Tbilisi State University, Tbilisi0105, Georgia
Z. Iqbal
Affiliation:
Salam Chair, Department of Physics, G. C. University Lahore, Katchery Road, Lahore54000, Pakistan
*
Email address for correspondence: [email protected]

Abstract

Radiative-magnetohydrodynamic (RMHD) equations along with a full set of Maxwell's equations are followed to formulate the charged surface waves at the interface of an incompressible, radiative, magnetized dusty plasma and vacuum, while assuming that the characteristic wave frequency is much smaller than the ion gyrofrequency, having an equilibrium background state. It is found that the separation of charges on the surface is followed by thermal motion, which further leads to a negative pressure gradient normal to the surface, hence the plasma–vacuum interface is under tension due to two different types of oppositely directed pressures. The dusty plasma RMHD set of equations admits a linear dispersion relation of surface Jeans instability of an incompressible dusty plasma, which exhibits a strong coupling between the electron surface charge and dust surface mass densities and we conclude that the surface densities of both electrons and dust as well as the dust inertia play major roles in the gravitational collapse of the surface of astrophysical objects such as stars, galaxies etc. Further, the growth rate of radiative surface waves is found to be function of both the temperature inhomogeneity, appearing due to thermal radiation heat flux, as well as the thermal radiation pressure. The present findings of charged surface waves may seek application at the astroscales.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliev, Yu. M. & Brodin, G. 1990 Instability of a strongly inhomogeneous plasma. Phys. Rev. A 42, 23742378.CrossRefGoogle ScholarPubMed
Allis, W. P., Buchsbaum, S. J. & Bers, A. 1963 Waves in Anisotropic Plasmas II. MIT.Google Scholar
Aroj, A. K., Rozina, Ch. & Jamil, M. 2016 Potential surface waves at the vacuum-radiative collisional plasma interface. Phys. Plasma 23, 112111.Google Scholar
Buti, B. 1985 Advances in Space Plasma Physics. World Scientific.Google Scholar
Chandrashekhar, S. 1961 Hydrodynamics and Hydromagnetic Stability. Clarendon Press.Google Scholar
Chandrashekhar, S. 1984 On stars, their evolution and their stability. Rev. Mod. Phys. 56, 137147.CrossRefGoogle Scholar
Cramer, N. F. & Vladimirov, S. V. 1996 Alfven surface waves in a magnetized dusty plasma. Phys. Plasmas 3, 47404747.CrossRefGoogle Scholar
Cramer, N. F., Vladimirov, S. V., Ostrikov, K. N. & Yu, M. Y. 1999 Compressional Alfvén cross-field surface waves in inhomogeneous dusty plasmas. Phys. Plasmas 6, 26762680.CrossRefGoogle Scholar
Glenzer, S. H., Landen, O. L., Neumayer, P., Lee, R. W., Widmann, K., Pollaine, S. W., Wallace, R. J., Gregori, G., Holl, A. & Bornath, T., et al. 2007 Observations of plasmons in warm dense matter. Phys. Rev. Lett. 98, 065002.CrossRefGoogle ScholarPubMed
Goldreich, P. & Lynden-Bell, D. 1965 I. Gravitational stability of uniformly rotating disks. Mon. Not. R. Astron. Soc. 130, 97124.CrossRefGoogle Scholar
Grozev, D., Shivarova, A. & Tanev, S. 1991 Experiments on the nonlinear evolution of surface waves in an open plasma waveguide. J. Plasma Phys. 45, 297322.CrossRefGoogle Scholar
Hong, W. P. & Jung, Y. D. 2016 Characteristics of the resonant instability of surface electrostatic-ion-cyclotron waves in a semi-bounded warm magnetized dusty plasma. Phys. Lett. a 380, 11931196.CrossRefGoogle Scholar
Hubert, J., Bordeleau, S., Tran, K. C., Michaud, S., Milette, B., Sing, R., Jalbert, J., Boudreau, D., Moisan, R. & Margot, J. 1996 Atomic spectroscopy with surface wave plasmas. Fresenius J. Anal. Chem. 355, 494500.Google ScholarPubMed
Janaki, M. S., Chakrabarti, N. & Banerjee, D. 2011 Jeans instability in a viscoelastic fluid. Phys. Plasmas 18, 012901.CrossRefGoogle Scholar
Janaki, M. S. & Dasgupta, B. 1998 Surface waves in a dusty plasma. Phys. Scr. 58, 493495.CrossRefGoogle Scholar
Landu, L. D. & Lifshitz, E. M. 1984 Fluid Mechanics. Pergamon Press.Google Scholar
Mamun, A. A. & Shukla, P. K. 2000 A new magnetic Jeans instability in a nonuniform partially ionized plasma. Phys. Scr. 62, 429432.CrossRefGoogle Scholar
Mamun, A. A. & Shukla, P. K. 2010 Solitary waves in an ultrarelativistic degenerate dense plasma. Phys. Plasmas 17, 104504.CrossRefGoogle Scholar
Margot, J. & Moisan, M. 1993 Characteristics of surface-wave propagation in dissipative cylindrical plasma columns. J. Plasma Phys. 49, 357374.CrossRefGoogle Scholar
Mcbride, J. B. & Kaw, P. K. 1970 Low-frequency surface waves on a warm plasma. Phys. Lett. A 33, 7273.CrossRefGoogle Scholar
Mihalas, D. & Mihalas, B. W. 1984 Foundations of Radiation Hydrodynamics. Oxford University Press.Google Scholar
Moisan, M., Shivarova, A. & Trivelpiece, A. W. 1982 Experimental investigations of the propagation of surface waves along a plasma column. Plasma Phys. 24, 13311400.CrossRefGoogle Scholar
Morfill, G. E., Tsytovich, V. N. & Thomas, H. 2003 Complex plasmas: II. Elementary processes in complex plasmas. Plasma Phys. Rep. 29, 130.CrossRefGoogle Scholar
Ostrikov, K. N., Yu, M. Y. & Azarenkov, N. A. 1998 Surface waves at the interface of a dusty plasma and a metallic wall. Phys. Rev. E 58, 24312435.CrossRefGoogle Scholar
Ostrikov, K. N., Yu, M. Y. & Stenflo, L. 2000 Surface waves in strongly irradiated dusty plasmas. Phys. Rev. E 61, 782787.CrossRefGoogle ScholarPubMed
Ostrikov, K. N., Yu, M. Y. & Sugai, H. 1999 Standing surface waves in a dust-contaminated large-area planar plasma source. J. Appl. Phys. 86, 24252430.CrossRefGoogle Scholar
Popel, S. I., Losseva, T. V., Golub, A. P., Merlino, R. & Andreev, S. N. 2005 Dust ion-acoustic shocks in a Q machine device. Plasma Phys. 45, 461475.Google Scholar
Popel, S. I., Tsytovich, V. N. & Yu, M. Y. 1998 Shock structures in plasmas containing variable-charge macro particles. Astrophys. Space Sci. 256, 107123.CrossRefGoogle Scholar
Prajapati, R. P. 2011 Effect of polarization force on the Jeans instability of self-gravitating dusty plasma. Phys. Lett. A 375, 26242628.CrossRefGoogle Scholar
Ritchie, R. H. 1957 Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874881.CrossRefGoogle Scholar
Rozina, Ch., Tsintsadze, L. N., Tsintsadze, N. L. & Ruby, R. 2019 Jeans surface instability of an electron-ion plasma. Phys. Scr. 94, 105601.CrossRefGoogle Scholar
Shivarov, A., Stoychev, T. & Russeva, S. 1975 Surface wave propagation along a current-carrying warm plasma column. J. Phys. D: Appl. Phys. 8, 383393.CrossRefGoogle Scholar
Shukla, P. K. & Stenflo, L. 2006 Jeans instabilities in quantum dusty plasmas. Phys. Lett. A 355, 378380.CrossRefGoogle Scholar
Trivelpiece, A. W. & Gould, R. W. 1959 Space charge waves in cylindrical plasma columns. J. Appl. Phys. 30, 17841793.CrossRefGoogle Scholar
Tsintsadze, L. N. 1995 Relativistic shock waves in an electron–positron plasma. Phys. Plasmas 2, 44624469.CrossRefGoogle Scholar
Tsintsadze, L. N. 1998 Stability of a charged plane surface of an electron–positron–ion plasma. Phys. Plasmas 5, 41074109.CrossRefGoogle Scholar
Tsintsadze, L. N., Callebauti, D. K. & Tsintsadze, N. L. 1996 Black-body radiation in plasmas. J. Plasma Phys. 55, 407413.CrossRefGoogle Scholar
Tsintsadze, N. L., Rozina, Ch., Ruby, R. & Tsintsadze, L. N. 2018 Jeans anisotropic instability. Phys. Plasmas 25, 073705.CrossRefGoogle Scholar
Tsintsadze, N. L., Rozina, Ch., Shah, H. A. & Murtaza, G. 2007 Stability of a charged interface between a magnetoradiative dusty plasma and vacuum. Phys. Plasmas 14, 073703.CrossRefGoogle Scholar
Tsintsadze, N. L., Rozina, Ch., Shah, H. A. & Murtaza, G. 2008 Jeans instability in a magneto-radiative dusty plasma. J. Plasma Phys. 74, 847853.CrossRefGoogle Scholar
Tsintsadze, N. L. & Tsintsadze, L. N. 2008 On dust charging equation. Europhys. Lett. 83, 15005.CrossRefGoogle Scholar
Tsytovich, V. N. 1997 Dust plasma crystals, drops, and clouds. Physics - Uspekhi 40, 5394.CrossRefGoogle Scholar
Tsytovich, V. N., Morfill, G. E. & Thomas, H. 2002 Complex plasmas: I. Complex plasmas as unusual state of matter. Plasma Phys. Rep. 28, 623651.CrossRefGoogle Scholar
Vladimirov, S. V. & Yu, M. Y. 1993 Low-frequency surface acoustic waves in a collisional plasma. J. Plasma Phys. 50, 7177.CrossRefGoogle Scholar
Wang, H.-B., Chen, Y.-Y. & Huang, C. 2019 The electromagnetic waves propagation characteristics of inhomogeneous dusty plasma. Optik 196, 163148.CrossRefGoogle Scholar
Zhelyazkov, I. & Atanassov, V. 1995 Axial structure of low-pressure high-frequency discharges sustained by travelling electromagnetic surface waves. Phys. Rep. 255, 79201.CrossRefGoogle Scholar