Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T00:23:28.146Z Has data issue: false hasContentIssue false

The generalized Balescu-Lenard collision Operator

Published online by Cambridge University Press:  13 March 2009

Harry E. Mynick
Affiliation:
Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08544, U.S.A.

Abstract

The generalization of the Balescu-Lenard collision operator to its fully electromagnetic counterpart in Kaufman's action-angle formalism is derived and its properties investigated. The general form may be specialized to any particular geometry where the unperturbed particle motion is integrable, and thus includes cylindrical plasmas, inhomogeneous slabs with non-uniform magnetic fields, tokamaks and the particularly simple geometry of the standard operator as special cases. The general form points to the commonality between axisymmetric, turbulent and ripple transport, and implies properties (e.g. intrinsic ambipolarity) that should be shared by them, under appropriate conditions. Along with a turbulent ‘anomalous diffusion coefficient’ calculated for tokamaks in previous work, an ‘anomalous pinch’ term of closely related structure and scaling is also implied by the generalized operator.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R. 1960 Phys. Fluids, 3, 52.CrossRefGoogle Scholar
Bernstein, I. B. & Molvig, K. 1983 Phys. Fluids, 26, 1488.CrossRefGoogle Scholar
Boozer, A. H. 1980 Phys. Fluids, 23, 2283.CrossRefGoogle Scholar
Cohen, R. H., Hizandis, K., Molvig, K. & Bernstein, I. B. 1984 Phys. Fluids, 27, 377.CrossRefGoogle Scholar
Dupree, T. H. 1970 Phys. Rev. Lett. 25, 789.CrossRefGoogle Scholar
Gentle, K. W., Richards, B. & Waelbroeck, F. 1986 University of Texas Report FRC 290.Google Scholar
Goldston, R. J., White, R. B. & Boozer, A. H. 1981 Phys. Rev. Lett. 47, 647.CrossRefGoogle Scholar
Hazeltine, R. D., Mahajan, S. M. & Hitchcock, D. A. 1981 Phys. Fluids, 24, 1164.CrossRefGoogle Scholar
Hinton, F. L. & Hazeltine, R. D. 1976 Rev. Mod. Phys. 48, 239.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic, Principles of Plasma Physics – A Statistical Approach. Benjamin.Google Scholar
Kaufman, A. N. 1971 Phys. Fluids, 14, 387.CrossRefGoogle Scholar
Kaufman, A. N. 1972 Phys. Fluids, 15, 1063.CrossRefGoogle Scholar
Kaufman, A. N. & Nakayama, T. 1970 Phys. Fluids, 13, 956.CrossRefGoogle Scholar
Lenard, A. 1960 Ann. Phys. (N.Y.) 10, 390.CrossRefGoogle Scholar
Lewis, H. R. & Symon, K. R. 1979 J. Math. Phys. 20, 413.CrossRefGoogle Scholar
Montgomery, D. & Turner, L. 1974 Phys. Fluids, 17, 954.CrossRefGoogle Scholar
Mynick, H. E. 1986 Nucl. Fusion, 26, 491.CrossRefGoogle Scholar
Mynick, H. E. & Krommes, J. A. 1980 Phys. Fluids, 23, 1229.CrossRefGoogle Scholar
Rechester, A. B. & Rosenbluth, M. N. 1978 Phys. Rev. Lett. 40, 38.CrossRefGoogle Scholar
Strachan, J. D., Bhetz, N., Mazzucato, E., Barnes, C. W., Boyd, D., Cohen, S. A., Hovey, J., Kaita, R., Medley, S. S., Schmidt, G., Tait, G. & Voss, D. 1982 Nucl. Fusion, 22, 1145.CrossRefGoogle Scholar