Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T04:29:13.219Z Has data issue: false hasContentIssue false

Forward directed ion acceleration in a LWFA with ionization-induced injection

Published online by Cambridge University Press:  10 January 2012

N. LEMOS
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal ([email protected])
J. L. MARTINS
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal ([email protected])
J. M. DIAS
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal ([email protected])
K. A. MARSH
Affiliation:
Department of Electrical Engineering, UCLA, Los Angeles, CA 90095, USA
A. PAK
Affiliation:
Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA
C. JOSHI
Affiliation:
Department of Electrical Engineering, UCLA, Los Angeles, CA 90095, USA

Abstract

In this work we present an experimental study where energetic ions were produced in an underdense 2.5 × 1019 cm−3 plasma created by a 50 fs Ti:Sapphire laser with 5 TWs of power. The plasma comprises 95% He and 5% N2 gases. Ionization-induced trapping of nitrogen K-shell electrons in the laser-induced wakefield generates an electron beam with a mean energy of 40 MeV and ~1 nC of charge. Some of the helium ions at the wake–vacuum interface are accelerated with a measured minimum ion energy of He1+ ions of 1.2 MeV and He2+ ions of 4 MeV. The physics of the interaction is studied with 2D particle-in-cell simulations. These reveal the formation of an ion filament on the axis of the plasma due to space charge attraction of the wakefield-accelerated high-charge electron bunch. Some of these high-energy electrons escape the plasma to form a sheath at the plasma–vacuum boundary that accelerates some of the ions in the filament in the forward direction. Electrons with energy less than the sheath potential cannot escape and return to the plasma boundary in a vortex-like motion. This in turn produces a time-varying azimuthal magnetic field, which generates a longitudinal electric field at the interface that further accelerates and collimates the ions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bulanov, S. V., Esirkepov, T.Zh, , Khoroshkov, V. S., Kuznetsov, A. V. and Pegoraro, F. 2002 Phys. Lett. A 299, 240.CrossRefGoogle Scholar
[2]Esirkepov, T., Borghesi, M., Bulanov, S. V., Moutou, G. and Tajima, T. 2004 Phys. Rev. Lett. 92, 175003.CrossRefGoogle Scholar
[3]Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A. and Snavely, R. A. 2001 Phys. Plasmas 8, 542.CrossRefGoogle Scholar
[4]Fuchs, J. et al. 2006 Nature Phys. 2, 4854.CrossRefGoogle Scholar
[5]Denavit, J., 1992 Phys. Rev. Lett. 69, 3052.CrossRefGoogle Scholar
[6]Silva, L. O. et al. 2004 Phys. Rev. Lett. 92, 015002.CrossRefGoogle Scholar
[7]Krushelnick, K. et al. 1999 Phys. Rev. Lett. 83 (4), 737740.CrossRefGoogle Scholar
[8]Willingale, L. et al. 2006 Phys. Rev. Lett. 96 (24), 245002.CrossRefGoogle Scholar
[9]Bulanov, S. V. and Esirkepov, T.Zh., , 2007 Phys. Rev. Lett. 98, 049503.CrossRefGoogle Scholar
[10]Kolodner, P. et al. 1979 Phys. Rev. Lett. 43, 1402.CrossRefGoogle Scholar
[11]Bulanov, S. V. et al. 2000 Phys. Rev. Lett. 71, 407.Google Scholar
[12]Bulanov, S. V. et al. 2005 Plasma Phys. Rep. 31 (5), 369381.CrossRefGoogle Scholar
[13]Fukuda, Y. et al. 2009 Phys. Rev. Lett. 103 (16), 165002.CrossRefGoogle Scholar
[14]Pak, A. et al. 2010 Phys. Rev. Lett. 104 (2), 025003.CrossRefGoogle Scholar
[15]Clayton, C. E. et al. 2010 Phys. Rev. Lett. 105 (10), 105003.CrossRefGoogle Scholar
[16]Fonseca, R. A. et al. 2002 Lect. Notes Comput. Sci. 2331, 342; Fonseca, R. A., Martins, S. F., Silva, L. O., Tonge, J. W., Tsung, F. and Mori, W. B. 2008 Plasma Phys. Control. Fusion 50, 124034.CrossRefGoogle Scholar
[17]Ralph, J. E. et al. 2009 Phys. Rev. Lett. 102, 175003.CrossRefGoogle Scholar
[18]Lu, W. et al. 2007 Phys. Rev. Spec. Top. – Accelerators and Beams 10, 061301.CrossRefGoogle Scholar
[19]Kostyukov, E. et al. 2009 Phys. Rev. Lett. 103 (17), 175003.CrossRefGoogle Scholar
[20]Popov, K. I. et al. 2010 Phys. Rev. Lett. 105 (19), 195002.CrossRefGoogle Scholar