Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T05:24:19.718Z Has data issue: false hasContentIssue false

Field-line reconnexion in the two-dimensional asymmetric case

Published online by Cambridge University Press:  13 March 2009

V. S. Semenov
Affiliation:
Institute of Physics, State University, Leningrad, USSR
I. V. Kubyshkin
Affiliation:
Institute of Physics, State University, Leningrad, USSR
M. F. Heyn
Affiliation:
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
H. K. Biernat
Affiliation:
Space Research Institute, Austrian Academy of Sciences, Graz, Austria

Abstract

A detailed mathematical analysis of plane steady-state reconnexion is given for the case when the plasma parameters and the magnetic fields are not identical on both sides of the current sheet. Asymptotic solutions in the sense that the inflow velocity is much less than the local Alfvén velocity as well as the arrangement of shock waves are obtained. Rotational (Alfvén) waves, slow shock waves, rarefaction waves (expansion fans), and a contact discontinuity may occur. Four different types of solution, corresponding to different shock wave configurations, are possible. They depend on the parameters of the inflow regions in a unique way.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Dover.Google Scholar
Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. & Stepanov, K. N. 1975 Plasma Electrodynamics. Pergamon.Google Scholar
Cowley, S. W. H. 1974 J. Plasma Phys. 12, 341.CrossRefGoogle Scholar
Kulikovskii, A. G. & Lyubimov, G. A. 1962 Magnetohydrodynamics. Fizmatgiz, Moscow.Google Scholar
Levy, R. H., Petschek, H. E. & Siscoe, G. L. 1964 AIAA J. 2, 2065.CrossRefGoogle Scholar
Parker, E. N. 1979 Cosmical Magnetic Fields. Oxford University Press.Google Scholar
Paschmann, G., Sonnerup, B. U. Ö., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russell, C. T. & Elphic, R. C. 1979 Nature, 282, 243.CrossRefGoogle Scholar
Paschmann, G., Haerendel, G., Papamastorakis, I., Sckopke, N., Bame, S. J., Gosling, J. T. & Russell, C. T. 1982 J. Geophys. Res. 87, 2159.CrossRefGoogle Scholar
Petschek, H. E. 1964 Proceedings of AAS-NASA Symposium on the Physics of Solar Flares (ed. W. N. Hess), NASA SP-50, p. 425.Google Scholar
Petschek, H. E. 1966 The Solar Wind (ed. Mackin, R. J. Jr. and Neugebauer, M.), p. 257. Pergamon.Google Scholar
Petschek, H. E. & Thorne, R. M. 1967 Astrophys. J. 147, 1157.CrossRefGoogle Scholar
Pudovkin, M. I. & Semenov, V. S. 1977 Ann. Geophys. 33, 429.Google Scholar
Pushkar, E. A. 1976 Fluid Dynamics, 5, 755.Google Scholar
Semenov, V. S. 1979 Thesis, Leningrad.Google Scholar
Semenov, V. S., Kubyshkin, I. V. & Heyn, M. F. 1983 J. Plasma Phys. 30, 303.CrossRefGoogle Scholar
Sonnerup, B. U. Ö. 1979 Solar System Plasma Physics, III (ed. Lanzerotti, L. J.Kennel, C. F. and Parker, E. N.), p. 45. North-Holland.Google Scholar
Soward, A. M. 1982 J. Plasma Phys. 28, 415.CrossRefGoogle Scholar
Soward, A. M. & Priest, E. R. 1982 J Plasma Phys. 28, 335.CrossRefGoogle Scholar
Vasyliunas, V. M. 1975 Rev. Geophys. Space Phys. 13, 303.CrossRefGoogle Scholar