Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T16:16:34.588Z Has data issue: false hasContentIssue false

Exact dielectric tensor for relativistic magnetized plasma with loss-cone and field-aligned drift

Published online by Cambridge University Press:  13 March 2009

Peter H. Yoon
Affiliation:
Center for Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.
Tom Chang
Affiliation:
Center for Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

Abstract

An exact form of the dielectric tensor for a wide variety of relativistic magnetized plasmas is derived from the fully relativistic linearized Vlasov-Maxwell equations. The equilibrium function chosen incorporates a loss-cone in perpendicular momentum space, and a net drift along the external field-line. This choice of distribution function is fully relativistic, and the resulting form of the dielectric tensor is valid for arbitrary value of temperature, arbitrary degrees of loss-cone, and arbitrary drift velocity along the field-line. The exact result is simplified in several limiting cases relevant to various physical applications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Dover.Google Scholar
Airoldi, A. C. & Orefice, A. 1982 J. Plasma Phys. 27, 515.CrossRefGoogle Scholar
Batchelor, D. B., Goldfinger, R. C. & Weitzner, H. 1984 Phys. Fluids, 27, 2835.CrossRefGoogle Scholar
Bornatici, M., Cano, R., De Barbieri, O. & Engelmann, F. 1983 Nucl. Fusion, 23, 1153.CrossRefGoogle Scholar
Davidson, R. C. & Yoon, P. H. 1989 Phys. Fluids, B 1, 195.CrossRefGoogle Scholar
Dnestrovskii, Yu. B., Kostomarov, D. P. & Skrydlov, N. V. 1964 Soviet Phys. Tech. Phys. 8, 691.Google Scholar
Dory, R. A., Guest, G. E. & Harris, E. G. 1965 Phys. Rev. Lett. 14, 131.CrossRefGoogle Scholar
Freund, H. P., Wong, H. K., Wu, C. S. & Xu, M. J. 1983 Phys. Fluids, 26, 2263.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Krivenski, V. & Orefice, A. 1983 J. Plasma Phys. 30, 125.CrossRefGoogle Scholar
Lee, L. C., Wu, C. S., Freund, H. P., Dillenberg, D. & Goedert, J. 1979 J. Plasma Phys. 22, 277.CrossRefGoogle Scholar
Le Queau, D., Pellat, R. & Roux, A. 1984 Phys. Fluids, 27, 247.CrossRefGoogle Scholar
Lominadze, D. G. & Mikhailovskii, A. B. 1979 Soviet Phys. JETP, 49, 483.Google Scholar
Pritchett, P. L. 1986 Phys. Fluids, 29, 2919.CrossRefGoogle Scholar
Robinson, P. A. 1986 J. Math. Phys. 27, 1206.CrossRefGoogle Scholar
Shi, B. R., Gaffey, J. D. & Wu, C. S. 1985 Phys. Fluids, 28, 846.Google Scholar
Shkarofsky, I. P. 1966 Phys. Fluids, 9, 561.CrossRefGoogle Scholar
Shkarofsky, I. P. 1986 J. Plasma Phys. 35, 319.CrossRefGoogle Scholar
Silin, V. P. 1960 Soviet Phys. JETP, 11, 1136.Google Scholar
Trubnikov, B. A. 1958 Plasma Physics and the Problem of a Controlled Thermonuclear Reaction. Pergamon.Google Scholar
Tsai, S. T., Wu, C. S., Wang, Y. D. & Kang, S. W. 1981 Phys. Fluids, 24, 2186.CrossRefGoogle Scholar
Uhm, H. S. & Davidson, R. C. 1986 Phys. Fluids, 29, 2713.CrossRefGoogle Scholar
Winglee, R. M. & Dulk, G. A. 1986 Astrophys. J. 307, 808.CrossRefGoogle Scholar
Wu, C. S. & Lee, L. C. 1979 Astrophys. J. 230, 621.CrossRefGoogle Scholar
Yoon, P. H. & Davidson, R. C. 1987 Phys. Rev. A 35, 2619.CrossRefGoogle Scholar