Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T14:32:24.468Z Has data issue: false hasContentIssue false

Equilibrium properties of a rotating plasma: differences between the fluid velocity and the drift velocity

Published online by Cambridge University Press:  13 March 2009

Hudong Chen
Affiliation:
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, U.S.A.
David Montgomery
Affiliation:
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, U.S.A.

Abstract

An equilibrium state of a magnetized non-neutral plasma confined in a smooth cylindrically symmetric container is obtained. The particle number of each species is fixed, and total energy and total canonical angular momentum are conserved in the system. Moreover, the most probable state satisfies the stationary Vlasov equation exactly. The key finding from this result is that the E × B drift velocity can be significantly different from the true fluid velocity, which always corresponds here to a rigid rotation. It is suggested that this difference may also be experimentally important in situations that are not in thermal equilibrium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
Biglari, H., Diamond, P. H. & Terry, P. W. 1989 Phys. Fluids B 2, 1.Google Scholar
Davidson, R. C. & Krall, N. 1969 Phys. Rev. Lett. 22, 833.CrossRefGoogle Scholar
Davidson, R. C. & Krall, N. 1970 Phys. Fluids 13, 1543.Google Scholar
Edwards, S. F. & Taylor, J. B. 1974 Proc. R. Soc. Lond. A 336, 257.Google Scholar
Joyce, G. & Montgomery, D. 1973 J. Plasma Phys. 10, 107.Google Scholar
Montgomery, D. & Joyce, G. 1974 Phys. Fluids 17, 1139.Google Scholar
O'Neil, T. M. & Driscoll, C. F. 1979 Phys. Fluids 22, 266.Google Scholar
Onsager, L. 1949 Suppl. Nuovo Cim. 6, 279.Google Scholar
Roache, P. J. 1982 Computational Fluid Dynamics. Hermosa.Google Scholar
Shaing, K. C. & Crume, E. C. 1989 Phys. Rev. Lett. 63, 2369.Google Scholar
Smith, R. A. & O'Neil, T. M. 1990 Phys. Fluids B 2, 2961.Google Scholar
Taylor, R. J., Brown, M. L., Fried, B. D., Grote, H., Liberati, J. R., Morales, G. J. & Pribyl, P.M 1989 Phys. Rev. Lett. 63, 2365.CrossRefGoogle Scholar
Tynan, G. R., Schmitz, L., Conn, R. W., Doerner, R. & Lehmer, R. 1992 Phys. Rev. Lett. 68, 3032.CrossRefGoogle Scholar