Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T06:47:39.106Z Has data issue: false hasContentIssue false

Enhanced levels of stimulated Brillouin reflectivity from non-Maxwellian plasmas

Published online by Cambridge University Press:  01 April 2007

M.S. BAWA'ANEH
Affiliation:
Department of Physics, The Hashemite University, Zarka, Jordan ([email protected])
T.J.M. BOYD
Affiliation:
Department of Physics, University of Essex, Wivenhoe Park, Colchester C04 3SQ, UK

Abstract.

A model that counts for temperature gradients in the target plasma, which leads to higher ion acoustic noise and enhanced levels of stimulated Brillouin scattering (SBS) gain and SBS reflectivity, has been adopted. Enhanced Brillouin gain leading to higher SBS reflectivity levels has been computed for non-homogeneous, non-Maxwellian plasmas. SBS reflectivity levels obtained are higher than those predicted by linear convective gain theory by several orders of magnitude and coincide with the high values of experimental data known in literature, which could not be interpreted by the linear convective gain theory.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Perkins, F. W. and Flick, J. 1971 Phys. Fluids 14, 2012.CrossRefGoogle Scholar
[2]Kaufman, A. and Cohen, B. I. 1973 Phys. Rev. Lett. 30, 1306.Google Scholar
[3]Goldman, M. W. and Dubois, D. F. 1965 Phys. Fluids 8, 1404.CrossRefGoogle Scholar
[4]Bodner, S. E. et al. . 1998 Phys. Plasmas 5, 1901.Google Scholar
[5]Baton, S. D. et al. . 1994 Phys. Rev. E 49, R3602.CrossRefGoogle Scholar
[6]Chirokikh, A., Seka, W., Craxton, R. S., Bahr, R. E., Simon, A., Short, R. W., Epperlein, E. M., Baldis, H. and Drake, R. P. 1993 Bull. Am. Phys. Soc. 38, 1934.Google Scholar
[7]Baldis, H. A. et al. . 1993 Phys. Fluids B 5, 3319.CrossRefGoogle Scholar
[8]Drake, R. P. and Williams, E. A. 1991 Phys. Rev. Lett. 67, 2477.CrossRefGoogle Scholar
[9]Tikhonchuk, V. T., Labaune, C. and Baldis, H. A. 1996 Phys. Plasmas 10, 3777.Google Scholar
[10]Casanova, M., Laval, G., Pellat, R. and Pesme, D. 1985 Phys. Rev. Lett. 54, 2230.CrossRefGoogle Scholar
[11]Heikkien, J. A., Karttunen, S. J. and Salomaa, R. R. 1984 Phys. Fluids 27, 707.Google Scholar
[12]Rozmus, W., Casanova, M., Pesme, D., Heron, A. and Adam, J. C. 1992 Phys. Fluids B 4, 576.CrossRefGoogle Scholar
[13]Candy, J., Rozmus, W. and Tikhonchuk, V. T. 1990 Phys. Rev. Lett. 65, 1889.CrossRefGoogle Scholar
[14]Bawa'aneh, M. S. 2003 Contrib. Plasma Phys. 43, 447.CrossRefGoogle Scholar
[15]Bawa'aneh, M. S. and Boyd, T. J. M. 2000 Inertial Fusion Sciences and Applications, State of the Art 1999 ed. Labaune, C., Hogan, W. J. and Tanaka, K. A.). Paris: Elsevier, 349.Google Scholar
[16]Berger, R. L., Williams, E. A. and Simon, A. 1989 Phys. Fluids B 1, 414.CrossRefGoogle Scholar
[17]Young, P. E., Baldis, H. A. and Estabrook, K. G. 1991 Phys. Fluids B 3 (5), 1245.Google Scholar
[18]Priest, E. R. and Sanderson, J. J. 1972 Plasma Physics 14, 951.CrossRefGoogle Scholar
[19]Allen, W. and Sanderson, J. J. 1974 Plasma Physics 16, 753.CrossRefGoogle Scholar
[20]Boyd, T. J. M. 1982 Physica Scripta T 2 (2), 310.CrossRefGoogle Scholar
[21]Simon, A. 1995 Phys. Plasmas 2, 3832.CrossRefGoogle Scholar
[22]Krall, N. A. and Book, D. L. 1969 Phys. Fluids 12, 347.Google Scholar
[23]Gary, S. P. 1993 Theory of Space Plasma Microinstabilities. Cambridge: Cambridge University Press.CrossRefGoogle Scholar