Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T19:04:10.176Z Has data issue: false hasContentIssue false

Energetic electron transport in the presence of magnetic perturbations in magnetically confined plasmas

Published online by Cambridge University Press:  13 July 2015

G. Papp*
Affiliation:
Max-Planck/Princeton Center for Plasma Physics, Germany Max-Planck-Institute for Plasma Physics, Garching & Greifswald, Germany
M. Drevlak
Affiliation:
Max-Planck-Institute for Plasma Physics, Garching & Greifswald, Germany
G. I. Pokol
Affiliation:
Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest, Hungary
T. Fülöp
Affiliation:
Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
*
Email address for correspondence: [email protected]

Abstract

The transport of energetic electrons is sensitive to magnetic perturbations. By using three-dimensional numerical simulation of test particle drift orbits we show that the transport of untrapped electrons through an open region with magnetic perturbations cannot be described by a diffusive process. Based on our test particle simulations, we propose a model that leads to an exponential loss of particles.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, V. I. 1963 Small denominators II: proof of a theorem by A. N. Kolmogorov on the preservation of conditionally-periodic motion under small perturbation of the Hamiltonian. Russ. Math. Surv. 18 (5), 9.CrossRefGoogle Scholar
Commaux, N., Baylor, L. R., Combs, S. K., Eidietis, N. W., Evans, T. E., Foust, C. R., Hollmann, E. M., Humphreys, D. A., Izzo, V. A., James, A. N., Jernigan, T. C., Meitner, S. J., Parks, P. B., Wesley, J. C. & Yu, J. H. 2011 Novel rapid shutdown strategies for runaway electron suppression in DIII-D. Nucl. Fusion 51 (10), 103001.CrossRefGoogle Scholar
Evans, T. E., Moyer, R. A., Thomas, P. R., Watkins, J. G., Osborne, T. H., Boedo, J. A., Doyle, E. J., Fenstermacher, M. E., Finken, K. H., Groebner, R. J., Groth, M., Harris, J. H., La Haye, R. J., Lasnier, C. J., Masuzaki, S., Ohyabu, N., Pretty, D. G., Rhodes, T. L., Reimerdes, H., Rudakov, D. L., Schaffer, M. J., Wang, G. & Zeng, L. 2004 Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary. Phys. Rev. Lett. 92, 235003.CrossRefGoogle ScholarPubMed
Fietz, S., Bergmann, A., Classen, I., Maraschek, M., Garcia-Munoz, M., Suttrop, W., Zohm, H. & the ASDEX Upgrade Team 2015 Influence of externally applied magnetic perturbations on neoclassical tearing modes at ASDEX Upgrade. Nucl. Fusion 55 (1), 013018.CrossRefGoogle Scholar
Hollmann, E. M., Aleynikov, P. B., Fülöp, T., Humphreys, D. A., Izzo, V. A., Lehnen, M., Lukash, V. E., Papp, G., Pautasso, G., Saint-Laurent, F. & Snipes, J. A. 2015 Status of research toward the ITER disruption mitigation system. Phys. Plasmas 22 (2), 021802.CrossRefGoogle Scholar
Kolmogorov, A. N. 1957 General theory of dynamical systems in classical mechanics. In Proceedings of the 1954 International Congress of Mathematics, vol. 1, pp. 315333. North Holland.Google Scholar
Koslowski, H. R., Liang, Y., Krämer-Flecken, A., Löwenbrück, K., von Hellermann, M., Westerhof, E., Wolf, R. C., Zimmermann, O. & the TEXTOR team 2006 Dependence of the threshold for perturbation field generated $m/n=2/1$ tearing modes on the plasma fluid rotation. Nucl. Fusion 46 (8), L1L5.CrossRefGoogle Scholar
Lehnen, M., Bozhenkov, S. A., Abdullaev, S. S. & Jakubowski, M. W. 2008 Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions. Phys. Rev. Lett. 100, 255003.CrossRefGoogle ScholarPubMed
Moser, J. 1962 On invariant curves of area preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen II Math. Phys. 1 (1), 120.Google Scholar
Mynick, H. E. & Strachan, J. D. 1981 Transport of runaway and thermal electrons due to magnetic microturbulence. Phys. Fluids 24 (4), 695702.CrossRefGoogle Scholar
Myra, J. R. & Catto, P. J. 1992 Effect of drifts on the diffusion of runaway electrons in tokamak stochastic magnetic fields. Phys. Fluids B 4 (1), 176186.CrossRefGoogle Scholar
Papp, G., Drevlak, M., Fülöp, T. & Helander, P. 2011a Runaway electron drift orbits in magnetostatic perturbed fields. Nucl. Fusion 51 (4), 043004.CrossRefGoogle Scholar
Papp, G., Drevlak, M., Fülöp, T., Helander, P. & Pokol, G. I. 2011b Runaway electron losses caused by resonant magnetic perturbations in ITER. Plasma Phys. Control. Fusion 53 (9), 095004.CrossRefGoogle Scholar
Papp, G., Drevlak, M., Fülöp, T. & Pokol, G. I. 2012 The effect of resonant magnetic perturbations on runaway electron transport in ITER. Plasma Phys. Control. Fusion 54 (12), 125008.CrossRefGoogle Scholar
Papp, G., Fülöp, T., Fehér, T., de Vries, P. C., Riccardo, V., Reux, C., Lehnen, M., Kiptily, V., Plyusnin, V. V., Alper, B. & contributors, JET EFDA 2013 The effect of ITER-like wall on runaway electron generation in JET. Nucl. Fusion 53 (12), 123017.CrossRefGoogle Scholar
Rechester, A. B. & Rosenbluth, M. N. 1978 Electron heat transport in a tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40 (1), 3841.CrossRefGoogle Scholar
Shimada, M., Campbell, D. J., Mukhovatov, V., Fujiwara, M., Kirneva, N., Lackner, K., Nagami, M., Pustovitov, V. D., Uckan, N., Wesley, J., Asakura, N., Costley, A. E., Donne, A. J. H., Doyle, E. J., Fasoli, A., Gormezano, C., Gribov, Y., Gruber, O., Hender, T. C., Houlberg, W., Ide, S., Kamada, Y., Leonard, A., Lipschultz, B., Loarte, A., Miyamoto, K., Mukhovatov, V., Osborne, T. H., Polevoi, A. & Sips, A. C. C. 2007 Progress in the ITER physics basis chapter 1: overview and summary. Nucl. Fusion 47 (6), S1S17.CrossRefGoogle Scholar
Smith, H. M., Fehér, T., Fülöp, T., Gál, K. & Verwichte, E. 2009 Runaway electron generation in tokamak disruptions. Plasma Phys. Control. Fusion 51 (12), 124008.CrossRefGoogle Scholar
Suttrop, W., Eich, T., Fuchs, J. C., Günter, S., Janzer, A., Herrmann, A., Kallenbach, A., Lang, P. T., Lunt, T., Maraschek, M., McDermott, R. M., Mlynek, A., Pütterich, T., Rott, M., Vierle, T., Wolfrum, E., Yu, Q., Zammuto, I. & Zohm, H. 2011 First observation of edge localized modes mitigation with resonant and nonresonant magnetic perturbations in ASDEX Upgrade. Phys. Rev. Lett. 106, 225004.CrossRefGoogle ScholarPubMed
Yoshino, R., Tokuda, S. & Kawano, Y. 1999 Generation and termination of runaway electrons at major disruptions in JT-60U. Nucl. Fusion 39 (2), 151161.CrossRefGoogle Scholar