Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T04:24:12.370Z Has data issue: false hasContentIssue false

Electrostatic waves potential at the plasma and upper-hybrid resonances

Published online by Cambridge University Press:  13 March 2009

J. Thiel
Affiliation:
Centre National de la Recherche Scientifique, Centre do Rocherche en Physique de 1'Environnemont, 45045 - Orléans Cédex (France)
R. Debrie
Affiliation:
Centre National de la Recherche Scientifique, Centre do Rocherche en Physique de 1'Environnemont, 45045 - Orléans Cédex (France)

Abstract

The potential created by an infinitesimal alternating dipole in a Maxwellian magnetoplasma is computed numerically at the plasma and upper-hybrid resonance frequencies when the latter extends from one to three times the electron cyclotron frequency. A linear full kinetic theory is used for a homogeneous magnetoplasma for which the forced ion motion and the collisions are neglected. The integral which gives the potential is evaluated by using the least-damping- roots (LDR) approximation, i.e. by neglecting the higher-order roots of the dispersion equation for electrostatic waves. Some characteristic potential patterns of dipoles parallel and perpendicular to the magnetic field are computed and comparisons with analytical results previously published are made. The numerical and analytical patterns are similar only at the plasma frequency when the dipole is parallel to the magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chassériaux, J. M. 1974 J. Plasma Phys. 11, 225.CrossRefGoogle Scholar
Chugunov, Y. V. 1971 Radiophys. 14, 44.Google Scholar
Fang, M. T. C. & Andrews, M. K. 1971 J. Plasma Phys. 6, 567.CrossRefGoogle Scholar
Filon, L. N. G. 1929 Proc. R. Soc. Edinburgh, 49, 38.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Kuehl, H. H. 1973 Phys. Fluids, 16, 1311.CrossRefGoogle Scholar
Lewis, R. M. & Keller, J. B. 1962 Phys. Fluids, 5, 1248.CrossRefGoogle Scholar
Muldrew, D. B. & Estabrooks, M. F. 1972 Radio Sci. 7, 579.CrossRefGoogle Scholar
Sitenko, A. G. & Stepanov, K. N. 1957 Soviet Phys. JETP, 4, 512.Google Scholar
Stix, T. H. 1962 Theory of Plasma Waves. McGraw-Hill.Google Scholar
Storey, L. R. O. & Thiel, J. 1978 Phys. Fluids, 21, 2325.CrossRefGoogle Scholar
Tataronis, J. A. & Crawford, F. W. 1970 J. Plasma Phys. 4, 249.CrossRefGoogle Scholar
Thiel, J. & Décréau, P. M. E. 1980 Phys. Fluids, 23, 2334.CrossRefGoogle Scholar
Trulsen, J. 1971 J. Plasma Phys. 6, 367.CrossRefGoogle Scholar
Ward, J. A. 1957 J. Assoc. Comp. Mach. 4, 148.CrossRefGoogle Scholar