Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T14:26:06.757Z Has data issue: false hasContentIssue false

Electrostatic instabilities in anti-loss-cone plasma

Published online by Cambridge University Press:  13 March 2009

K. G. Bhatia
Affiliation:
Indian Institute of Geomagnetism, Colaba, Bombay 400 005, India
G. S. Lakhina
Affiliation:
Indian Institute of Geomagnetism, Colaba, Bombay 400 005, India

Abstract

It is shown that both lower hybrid and modified electron acoustic instabilities can be excited in a hot anti-loss-cone plasma co-existing with a rarefied cold plasma, provided the anti-loss-cone factor, ρ, exceeds a value Tm/Tt, where Tm and Tt are the parallel temperatures of missing and trapped electrons respectively. These instabilities are excited in a bounded range of wavenumbers and the growth rates are enhanced with the increase of cold plasma density. For

Tm/Tt < ρ > (Tm/Tt

both the instabilities are of resonant type whereas for ρ > (Tm/Tt)½ both may be converted into non-resonant types. These instabilities are expected to give rise to the heating of protons as well as electrons in the magnetosphere beyond the plasmapause.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aref'ev, V. I. 1970 Sov. Phys. Tech. Phys. 14, 1487.Google Scholar
Benson, R. F. 1974 Phys. Fluids, 17, 1032.CrossRefGoogle Scholar
Buti, B. 1976a J. Plasma Phys. 15, 105.CrossRefGoogle Scholar
Buti, B. 1976b J. Geophys. Res. 81, 5363.Google Scholar
Buti, B. 1976c J. Plasma Phys. 16, 73.CrossRefGoogle Scholar
Buti, B. 1976d J. Geophys. Res. 81,6221.CrossRefGoogle Scholar
Demchenko, V. V. & Hussein, A. M. 1974 Nucl. Fusion, 14, 237.CrossRefGoogle Scholar
Fredricks, R. W. & Scarf, F. L. 1973 J. Geophys. Res. 78, 310.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Hoffman, R. A. & Evans, D. S. 1968 J. Geophys. Res. 73, 6201.CrossRefGoogle Scholar
Kennel, C. F., Fredricks, R. W. & Scarf, F. L. 1970 Partisles and Fields in the Magnetosphere (ed. McCormac, B. M.), p. 261. Reidel.Google Scholar
Lakhina, G. S. 1977 Planet. Space. Sci. 25, 598.CrossRefGoogle Scholar
Lashmore-Davies, C. N. & Martin, T. J. 1973 Nucl. Fusion, 13, 193.CrossRefGoogle Scholar
Mcbride, J. B., Ott, E., Boris, J. P. & Orens, J. H. 1972 Phys. Fluids, 15, 2367.CrossRefGoogle Scholar
Nambu, N. & Watanabe, T. 1975 Geophys. Res. Lelt. 2, 176.CrossRefGoogle Scholar
Oya, H. 1972 J. Geophys. Res. 77, 3483.CrossRefGoogle Scholar
Revathy, P. & Lakhina, G. S. 1977 J. Plasma Phys. 17, 133.CrossRefGoogle Scholar
Roederer, J. G. 1967 J. Geophys. Res. 72, 981.CrossRefGoogle Scholar
West, H. I., Buck, R. M. & Walton, J. R. 1973 J. Geophys. Res. 78, 1064.CrossRefGoogle Scholar
Whalen, B. A. & Mcdiarmid, I. B. 1972 J. Geophys. Res. 77, 191.CrossRefGoogle Scholar