Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T15:30:08.162Z Has data issue: false hasContentIssue false

Electron cyclotron masing and the force due to net stimulated bremsstrahlung in an electron cyclotron maser using a dilute non-relativistic electron beam

Published online by Cambridge University Press:  13 March 2009

S. H. Kim
Affiliation:
Center for Accelerator Science and Technology, The University of Texas at Arlington, P.O. Box 19363, Arlington, Texas 76019, U.S.A.

Abstract

The amplification of an electromagnetic wave by net stimulated bremsstrahlung (the emission by stimulated bremsstrahlung minus the absorption by inverse bremsstrahlung) injected into a non-relativistic dilute electron beam travelling in a uniform magnetic field is considered. The d.c. ponderomotive force by net stimulated emission is calculated by using quantum kinetics. From the calculated ponderomotive force, the amplification of the intensity of the electromagnetic wave by the net stimulated bremsstrahlung is derived as a function of the relevant parameters of the electromagnetic wave and the electron beam. It is found that masing is possible when the perpendicular temperature of the electron beam is greater than its parallel temperature. It is shown that the efficiency of a practical gyrotron cannot be explained by the phase-bunching concept, and that simulated bremsstrahlung has nothing to do with any phase bunching.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akama, B. & Nambu, M. 1981 Phys. Lett. 84A, 68.CrossRefGoogle Scholar
Bott, J. B. 1965 Phys. Lett. 14, 293.CrossRefGoogle Scholar
Carmel, Y. & Nation, J. A. 1973 Phys. Rev. Lett. 31, 806.CrossRefGoogle Scholar
Chow, K. K. & Pantell, R. H. 1960 Proc. IRE, 48, 1865.CrossRefGoogle Scholar
Chu, K. R. & Hirshfield, J. L. 1978 Phys. Fluids, 21, 461.CrossRefGoogle Scholar
Flygin, V. A., Gapov, A. V., Petelin, M. I. & Yulpatov, V. K. 1977 IEEE Trans. Microwave Theory and Technol. 25, 514.CrossRefGoogle Scholar
Fried, B. D. 1959 Phys. Fluids, 2, 337.CrossRefGoogle Scholar
Friedman, M., Hammer, D. A., Manheimer, W. M. & Sprangle, P. 1973 Phys. Rev. Lett. 31, 752.CrossRefGoogle Scholar
Friedman, M. & Herndon, M. 1973 Phys. Fluids, 16, 1982.CrossRefGoogle Scholar
Gapanov, A. V. 1959 Izv. VUZ Radiofizika, 2, 837.Google Scholar
Gapanov, A. V., Petelin, M. I. & Yulpatov, V. K. 1967 Radio Phys. Quantum Electron. 10, 794.CrossRefGoogle Scholar
Harris, E. G. 1961 J. Nucl. Energy, C 2, 138.CrossRefGoogle Scholar
Harris, E. G. 1969 Advances in Plasma Physics (ed. Simom, A. & Thompson, W. B.), vol. III, p. 86. Wiley.Google Scholar
Hirshfield, J. L. & Granatstein, V. L. 1977 IEEE Trans. Microwave Theory and Technol. 25, 532.CrossRefGoogle Scholar
Hirshfield, J. L. & Wachtel, J. M. 1964 Phys. Rev. Lett. 12, 533.CrossRefGoogle Scholar
Jackson, J. D. 1962 Classical Electrodynamics, p. 247. Wiley.Google Scholar
Kim, S. H. 1982 a Nuovo Cimento, 70B, 55.CrossRefGoogle Scholar
Kim, S. H. 1982 b Phys. Rev. A 26, 567.CrossRefGoogle Scholar
Kim, S. H. 1982 c Nuovo Cimento, 71B, 227.CrossRefGoogle Scholar
Kim, S. H. 1984 Phys. Fluids, 27, 675.CrossRefGoogle Scholar
Kim, S. H. 1985 a Nuovo Cimento Lett. 44, 467.CrossRefGoogle Scholar
Kim, S. H. 1985 b Bull. Am. Phys. Soc. 30, 1097.Google Scholar
Kim, S. H. 1986 J. Plasma Phys. 36, 195.CrossRefGoogle Scholar
Kim, S. H. & Wilhelm, H. E. 1982 Phys. Fluids, 25, 668.CrossRefGoogle Scholar
Landau, L. & Lifshitz, E. M. 1965 Quantum Mechanics, p. 425. Addison-Wesley.Google Scholar
Manheimer, W. M. & Ott, E. 1973 Phys. Fluids, 17, 463.CrossRefGoogle Scholar
Nambu, M. 1987 J. Phys. Soc. Jpn, 56, 544.CrossRefGoogle Scholar
Nambu, M., Bujabbarua, S. & Sarma, S. N. 1987 Phys. Rev. A 35, 798.CrossRefGoogle Scholar
Sagdeev, R. Z. & Shafranov, V. D. 1961 Soviet Phys. JETP, 12, 130.Google Scholar
Schneider, J. 1959 Phys. Rev. Lett. 2, 504.CrossRefGoogle Scholar
Seely, J. F. 1974 Phys. Rev. A 10, 1863.CrossRefGoogle Scholar
Sprangle, P. & Drobot, A. T. 1977 IEEE Trans. Microwave Theory and Technol. 25, 528.CrossRefGoogle Scholar
Sudan, R. N. 1963 Phys. Fluids, 6, 57.CrossRefGoogle Scholar
Twiss, R. Q. 1958 Aust. J. Phys. 11, 564.CrossRefGoogle Scholar
Wachtel, J. M. & Hirshfield, J. L. 1966 Phys. Rev. Lett. 17, 348.CrossRefGoogle Scholar
Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar