Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Caramana, E. J.
Nebel, R. A.
and
Schnack, D. D.
1983.
Nonlinear, single-helicity magnetic reconnection in the reversed-field pinch.
The Physics of Fluids,
Vol. 26,
Issue. 5,
p.
1305.
Storet, R G
1983.
Spectrum of an exactly soluble resistive magnetohydrodynamic model.
Plasma Physics,
Vol. 25,
Issue. 11,
p.
1279.
Ryu, C. M.
and
Grimm, R. C.
1984.
The spectrum of resistive MHD modes in cylindrical plasmas.
Journal of Plasma Physics,
Vol. 32,
Issue. 2,
p.
207.
Schnack, D.D
Baxter, D.C
and
Caramana, E.J
1984.
A pseudospectral algorithm for three-dimensional magnetohydrodynamic simulation.
Journal of Computational Physics,
Vol. 55,
Issue. 3,
p.
485.
Werley, K. A.
Nebel, R. A.
and
Wurden, G. A.
1985.
Transport description of the rise time of sawtooth oscillations in reversed-field pinches.
The Physics of Fluids,
Vol. 28,
Issue. 5,
p.
1450.
Tanaka, Y.
Azumi, M.
Kurita, G.
Tsunematsu, T.
and
Takeda, T.
1985.
A matrix method for resistive MHD stability analysis of axisymmetric toroidal plasma.
Computer Physics Communications,
Vol. 38,
Issue. 3,
p.
339.
Schnack, D. D.
Caramana, E. J.
and
Nebel, R. A.
1985.
Three-dimensional magnetohydrodynamic studies of the reversed-field pinch.
The Physics of Fluids,
Vol. 28,
Issue. 1,
p.
321.
Aydemir, A. Y.
Barnes, D. C.
Caramana, E. J.
Mirin, A. A.
Nebel, R. A.
Schnack, D. D.
and
Sgro, A. G.
1985.
Compressibility as a feature of field reversal maintenance in the reversed-field pinch.
The Physics of Fluids,
Vol. 28,
Issue. 3,
p.
898.
Kerner, W.
Lerbinger, K.
Gruber, R.
and
Tsunematsu, T.
1985.
Normal mode analysis for resistive cylindrical plasmas.
Computer Physics Communications,
Vol. 36,
Issue. 3,
p.
225.
Kerner, W
Jakoby, A
and
Lerbinger, K
1986.
Finite-element semi- discretization of linearized compressible and resistive MHD.
Journal of Computational Physics,
Vol. 66,
Issue. 2,
p.
332.
Storer, R.G
1986.
Numerical studies of toroidal resistive magnetohydrodynamic instabilities.
Journal of Computational Physics,
Vol. 66,
Issue. 2,
p.
294.
Hosking, R.J
and
Tendys, J
1986.
Computation of visco-resistive MHD instabilities.
Journal of Computational Physics,
Vol. 66,
Issue. 2,
p.
274.
Merlin, D.
Ortolani, S.
Paccagnella, R.
and
Scapin, M.
1989.
Linear resistive magnetohydrodynamic stability analysis of reversed field pinch configurations at finite beta.
Nuclear Fusion,
Vol. 29,
Issue. 7,
p.
1153.
Chu, M. S.
Chance, M. S.
Greene, J. M.
and
Jensen, T. H.
1989.
A tearing mode energy principle for an axisymmetric force-free plasma.
Physics of Fluids B: Plasma Physics,
Vol. 1,
Issue. 1,
p.
62.
Chu, M. S.
Chance, M. S.
Greene, J. M.
and
Jensen, T. H.
1990.
A tearing mode energy principle for an axisymmetric finite beta plasma.
Physics of Fluids B: Plasma Physics,
Vol. 2,
Issue. 1,
p.
97.
Kusano, K.
and
Sato, T.
1990.
Simulation study of the self-sustainment mechanism in the reversed field pinch configuration.
Nuclear Fusion,
Vol. 30,
Issue. 10,
p.
2075.
Popov, A. M.
1991.
Mathematical modeling of MHD-instabilities in plasma.
Computational Mathematics and Modeling,
Vol. 2,
Issue. 2,
p.
187.
Harley, T.R.
Cheng, C.Z.
and
Jardin, S.C.
1992.
The computation of resistive MHD instabilities in axisymmetric toroidal plasmas.
Journal of Computational Physics,
Vol. 103,
Issue. 1,
p.
43.
Sudit, I D
and
Chen, F F
1994.
A non-singular helicon wave equation for a non-uniform plasma.
Plasma Sources Science and Technology,
Vol. 3,
Issue. 4,
p.
602.
Greaves, R. G.
and
Surko, C. M.
1995.
An Electron-Positron Beam-Plasma Experiment.
Physical Review Letters,
Vol. 75,
Issue. 21,
p.
3846.