Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T12:04:41.970Z Has data issue: false hasContentIssue false

Effects of inelastic collisions in low-temperature, diffusion-dominated discharges

Published online by Cambridge University Press:  13 March 2009

A. Airoldi Crescentini
Affiliation:
Gruppo Nazionale di Elettronica Quantistica e Plasmi del C.N.R., Sezione di Milano
C. Maroli
Affiliation:
Istituto di Scienze Fisiche, Università di Milano, Milano, Italy.

Abstract

A numerical iteration procedure has been used to obtain the solution of an integrodifferential (linear) equation which gives the energy distribution of the electrons of a low-temperature, diffusion-dominated discharge. The equation takes explicitly into account the effects of inelastic electron-neutral collisions. The results presented here have been obtained, as an instance, for helium and neon discharges, in presence of a static and uniform magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allis, W. P. 1956 Handbuch der Physik, vol. 21. Berlin: Springer-Verlag.Google Scholar
Allis, W. P. & Rose, D. J. 1954 Phys. Rev. 93, 84.CrossRefGoogle Scholar
Barbiere, D. 1951 Phys. Rev. 84, 653.CrossRefGoogle Scholar
Bernstein, I. B. 1962 Discharge Theory. Lecture Notes for the Summer Institute in Plasma Physics, Princeton University.Google Scholar
Brown, S. C. 1956 Handbuch der Physik, vol. 22. Berlin: Springer-Verlag.Google Scholar
Carleton, N. P. & Megill, L. R. 1962 Phys. Rev. 126, 2089.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1952 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Cohen, I. M. & Kruskal, M. D. 1965 Phys. Fluids 8, 920.CrossRefGoogle Scholar
Davydov, B. 1935 Phys. Z. Sovjetunion 8, 59.Google Scholar
Druyvesteyn, M. J. 1930 Physica 10, 61.Google Scholar
Erdélyi, A. 1956 Asymptotic Expansions. Dover edition, chapter IV.Google Scholar
Friedman, H. W. 1967 Phys. Fluids 10, 2053.CrossRefGoogle Scholar
Frost, L. S. & Phelps, A. V. 1962 Phys. Rev. 127, 1621.CrossRefGoogle Scholar
Hartman, L. M. 1948 Phys. Rev. 73, 316.CrossRefGoogle Scholar
Heylen, A. E. D. & Lewis, T. J. 1963 Proc. Roy. Soc. A 271, 531.Google Scholar
Holstein, T. 1946 Phys. Rev. 70, 367.CrossRefGoogle Scholar
Kovrizhnykh, L. M. 1960 Sov. Phys. JETP 10, 347.Google Scholar
Margenau, H. 1948 Phys. Rev. 73, 297.CrossRefGoogle Scholar
Maroli, C. 1966 Nuovo Cimento 41B, 208.CrossRefGoogle Scholar
MeGill, L. R., Rees, M. H. & Droppleman, L. K. 1963 Planet. Space Sci. 11, 45.CrossRefGoogle Scholar
MeGill, L. R. & Cahn, J. H. 1964 J. Geophys. Res. 69, 5041.CrossRefGoogle Scholar
Rose, D. J. & Brown, S. C. 1955 Phys. Rev. 98, 310.CrossRefGoogle Scholar
Sherman, B. 1960 J. math. Analysis Applica. 1, 342.CrossRefGoogle Scholar
Smit, J. A. 1937 Physica, 3, 543.CrossRefGoogle Scholar