Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T13:32:43.906Z Has data issue: false hasContentIssue false

Effects of collisional and viscous dissipations on the ion-acoustic–Langmuir interactions

Published online by Cambridge University Press:  13 March 2009

M. Mohan
Affiliation:
Physical Research Laboratory, Ahmedabad – 380009, India
B. Buti
Affiliation:
Physical Research Laboratory, Ahmedabad – 380009, India

Extract

A pair of modified Zakharov equations coupling the high-frequency Langmuir oscillations to the low-frequency ion-acoustic perturbations in a turbulent, collisional plasma with a neutral background is derived. The time evolution of the coupled ion-acoustic–Langmuir solitons show that the electron–ion and electron–neutral collisions damp the Langmuir oscillations and let the ion density perturbations radiate away. On the other hand, the ion–neutral collisions damp the ion density perturbations letting the Langmuir oscillations flow out. In the case of ion viscosity, however, both the ion density perturbations and the Langmuir oscillations radiate away one after the other. In these processes, electron–ion and electron–neutral collisions seem to dominate over the other two.

Type
Articles
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdulloev, K. O., Bogoliubskii, I. L. & Makhankov, V. G., 1975 Nucl. Fusion, 15, 21.CrossRefGoogle Scholar
Appert, K. & Vaclavik, J. 1977 Phys. Fluids, 20, 1845.CrossRefGoogle Scholar
Bratenahl, A. et al. 1960 University of California Lawrence Radiation Laboratory UCRL Report No. 9106 and 9243.Google Scholar
Buti, B. 1977 Phys. Rev. Lett., 38, 498.CrossRefGoogle Scholar
Danielsson, L. 1970 Phys. Fluids, 13, 2288.CrossRefGoogle Scholar
Danielsson, L. 1973 Astrophys. and Space Sci., 24, 459.CrossRefGoogle Scholar
Galeev, A. A., Sagdeev, R. Z., Shapiro, V. D. & Shevchenko, V. I. 1976 JEETP Lett. 24, 21.Google Scholar
Gaponov, A. V. & Miller, M. A. 1958 Soviet Phys. JETP, 7, 168.Google Scholar
Gibbons, J.Thornhill, S. G., Wardrop, M. J. & ter Haar, D. 1977 J. Plasma Phys. 17, 153.CrossRefGoogle Scholar
Gurovich, V. T. & Karpman, V. I. 1970 Soviet Phys. JETP, 30, 788.Google Scholar
Hsuan, H. 1968 Phys. Rev. 172, 137.CrossRefGoogle Scholar
Ikezi, H., Nishikawa, K. & Mima, K. 1974 J. Phys. Soc. Japan, 42, 1005.Google Scholar
Ikezi, H., Nishikawa, K., Hojo, H. & Mima, K. 1975 Proceedings of 5th International Conference on Plasma Physics and Controlled Nuclear Fusion, Tokyo, vol. 2, p. 609. IAEA.Google Scholar
Karpman, V. I. 1975 Physica Scripta, 11, 263.CrossRefGoogle Scholar
Kaw, P. K. & Nishikawa, K. 1975 J. Phys. Soc. Japan, 38, 1753.CrossRefGoogle Scholar
Khakimov, F. K. & Tsytovich, V. N. 1976 Soviet Phys. JETP, 43, 929.Google Scholar
Makhankov, V. G. 1974 Phys. Lett. 50 A, 42.CrossRefGoogle Scholar
Morales, G. J. & Lee, Y. C. 1974 Phys. Rev. Lett. 33, 1016.CrossRefGoogle Scholar
Nishikawa, K., Hojo, H., Mima, K. & Ikezi, H. 1974 Phys. Rev. Lett., 33, 149.CrossRefGoogle Scholar
Smith, G. D. 1965 Numerical Solution of Partial Differential Equations. Oxford University Press.Google Scholar
Taniuti, T. 1974 Prog. Theor. Phys. Suppl. 55, 1.CrossRefGoogle Scholar
Thornhill, S. G. & ter Haar, D. 1978 Phys. Reports, 43 C, 45.CrossRefGoogle Scholar
Wong, A. Y. & Quon, B. H. 1975 Phys. Rev. Lett. 34, 1499.CrossRefGoogle Scholar
Zabusky, N. J. & Kruskal, M. D. 1965 Phys. Rev. Lett. 15, 240.CrossRefGoogle Scholar
Zakharov, V. E. 1972 Soviet Phys. JETP, 39, 1003.Google Scholar