Article contents
The effect of viscosity and resistivity on Rayleigh–Taylor instability induced mixing in magnetized high-energy-density plasmas
Published online by Cambridge University Press: 25 April 2022
Abstract
This work numerically investigates the role of viscosity and resistivity in Rayleigh–Taylor instabilities in magnetized high-energy-density (HED) plasmas for a high Atwood number and high plasma beta regimes surveying across plasma beta and magnetic Prandtl numbers. The numerical simulations are performed using the visco-resistive magnetohydrodynamic equations. Results presented here show that the inclusion of self-consistent viscosity and resistivity in the system drastically changes the growth of the Rayleigh–Taylor instability (RTI) as well as modifies its internal structure at smaller scales. It is seen here that the viscosity has a stabilizing effect on the RTI. Moreover, the viscosity inhibits the development of small-scale structures and also modifies the morphology of the tip of the RTI spikes. On the other hand, the resistivity reduces the magnetic field stabilization, supporting the development of small-scale structures. The morphology of the RTI spikes is seen to be unaffected by the presence of resistivity in the system. An additional novelty of this work is in the disparate viscosity and resistivity profiles that may exist in HED plasmas and their impact on RTI growth, morphology and the resulting turbulence spectra. Furthermore, this work shows that the dynamics of the magnetic field is independent of viscosity and likewise the resistivity does not affect the dissipation of enstrophy and kinetic energy. In addition, power law scalings of enstrophy, kinetic energy and magnetic field energy are provided in both the injection range and inertial sub-range, which could be useful for understanding RTI induced turbulent mixing in HED laboratory and astrophysical plasmas and could aid in the interpretation of observations of RTI-induced turbulence spectra.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Author(s), 2022. Published by Cambridge University Press
References
REFERENCES
- 6
- Cited by