Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T15:27:39.607Z Has data issue: false hasContentIssue false

The effect of transition layer inhomogeneity on the stability of compressible MHD fluids

Published online by Cambridge University Press:  01 December 2008

L. RAJAEE
Affiliation:
Shahid Beheshti University, G.C., Physics Dept. and Laser–Plasma Research Institute, 19839, Evin, Tehran, Iran ([email protected])
B. SHOKRI
Affiliation:
Shahid Beheshti University, G.C., Physics Dept. and Laser–Plasma Research Institute, 19839, Evin, Tehran, Iran ([email protected])

Abstract

The Kelvin–Helmholtz instability on the interface of two magnetized compressible fluids with tangential discontinuity is studied in two situations. For a sharp interface, the stability conditions of the surface with tangential discontinuity is investigated. It is shown that in this case magnetohydrodynamic modes such as Alfvén and the magnetosonic waves can propagate. When a transition layer exists between two fluids and the density and magnetic field change across this layer, numerical solutions show that the increase of the Mach number and compressibility has a destabilizing effect while the magnetic field and density increase has a stabilizing effect.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Landau, L. D. and Lifshitz, E. M. 1987 Fluid Mechanics. New York: Pergamon Press.Google Scholar
[2]Lamb, H. 1945 Hydrodynamics. New York: Dover.Google Scholar
[3]Landau, L. D. and Lifshitz, E. M. 1960 Electrodynamics of Continuous Media. New York: Pergamon Press.Google Scholar
[4]Ruderman, M. S., Verwichte, E., Erdelyi, R. and Goossens, M. 1996 Plasma. Phys. 56, 285.CrossRefGoogle Scholar
[5]Funada, T. and Joseph, D. D. 2001 J. Fluid Mech. 445, 263.CrossRefGoogle Scholar
[6]Chen, G. X., Lin, Y. and Cable, S. 2000 Geophys. Res. Lett. 27, 3583.CrossRefGoogle Scholar
[7]Lai, S. H. and Lya, L. H. 2006 J. Geophys. Res. 111, A0120.Google Scholar
[8]Parker, E. N. 2001 Chin. J. Astron. Astrophys. 1, 99.CrossRefGoogle Scholar
[9]Smets, R. 2000 J. Geophys. Res. 105, 250.Google Scholar
[10]Parker, E. N. 2004 Phys. Plasmas 11, 2328.CrossRefGoogle Scholar
[11]Treumann, R. A. and Baumjohann, W. 2000 Nonlin. Process. Geophys. 7, 179.CrossRefGoogle Scholar
[12]Sen, A. K. 1964 Phys. Fluids 7, 1293.CrossRefGoogle Scholar
[13]Fejer, J. A. 1964 Phys. Fluids 7, 499.CrossRefGoogle Scholar
[14]Kritskhalia, V. G. 1994 Planet. Space Sci. 42, 513.CrossRefGoogle Scholar
[15]Rajaee, L. and Shokri, B. 2007 J. Phys. D: Appl. Phys. 40 3512.CrossRefGoogle Scholar
[16]Gratton, F. T., Gnavi, G., Farrugia, C. J. and Bender, L. 2004 Braz. J. Phys. 34 1804.CrossRefGoogle Scholar
[17]Taroyan, Y. and Erdelyi, R. 2002 Phys. Plasmas 9 3121.CrossRefGoogle Scholar
[18]Arshukova, I. L., Erkaev, N. V., Biernat, H. K. and Vogl, D. F. 2004 Adv. Space Res. 33, 182.CrossRefGoogle Scholar
[19]Joarder, P. S. and Nakariakov, V. M. 2006 Geophys. Astrophys. Fluid Dynam. 100, 59.CrossRefGoogle Scholar
[20]Aliev, Yu. M. and Brodin, G. 1990 Phys. Rev. A42, 2374.CrossRefGoogle Scholar
[21]Taroyan, Y. and Erdelyi, R. 2003 Phys. Plasmas 10 266.CrossRefGoogle Scholar
[22]Mishin, V. V. 2003 Nonlin. Process. Geophys. 10, 351.CrossRefGoogle Scholar
[23]Alexandrov, A. F., Bogdankevich, L. S. and Rukhadze, A. A. 1984 Principles of Plasma Electrodynamics. New York: Springer.CrossRefGoogle Scholar