Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T14:37:46.164Z Has data issue: false hasContentIssue false

The effect of thermal anisotropy on the propagation of whistler waves in mixed hot-cold electron plasmas

Published online by Cambridge University Press:  13 March 2009

Hiromitsu Hamabata
Affiliation:
Department of Physics, Faculty of Science, Osaka City University, Osaka 558, Japan

Abstract

The first-order CGL fluid equations for electrons including the first-order heat fluxes are applied to the propagation of whistler waves. The dispersion relation of whistler waves is derived for two types of equilibrium electron distribution functions with cold and hot components. The effect of electron temperature anisotropy and the existence of cold electrons on the field-aligned propagation of whistler waves is analysed. It is shown that the electron temperature anisotropy intensifies the tendency of whistler waves to follow the lines of force of static magnetic field, that the existence of cold electrons in an anisotropic plasma further intensifies this tendency, and that under certain conditions the waves propagate only along the static magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B. J. & Feldman, W. C. 1977 J. Plasma Phys. 17, 123.CrossRefGoogle Scholar
Bowers, E. 1971 J. Plasma Phys. 6, 87.Google Scholar
Chew, C. F., Goldberger, M. L. & Low, F. E. 1956 Proc. Roy. Soc. A 236, 435.Google Scholar
Cuperman, S. & Landau, R. 1974 J. Geophys. Res. 79, 128.CrossRefGoogle Scholar
Fedele, J. B. 1969 J. Plasma Phys. 3, 673.CrossRefGoogle Scholar
Frieman, E., Davidson, R. & Langdon, B. 1966 Phys. Fluids, 9, 1475.CrossRefGoogle Scholar
Kennel, C. F. & Greene, J. M. 1966 Ann. Phys. 38, 63.CrossRefGoogle Scholar
Macmahon, A. 1965 Phys. Fluids, 8, 1840.CrossRefGoogle Scholar
Morioka, S. & Spreiter, J. R. 1970 J. Plasma Phys. 4, 403.Google Scholar
Namikawa, T., Hamabata, H. & Tanabe, K. 1981 J. Plasma Phys. 26, 83.CrossRefGoogle Scholar
Namikawa, T. & Hamabata, H. 1981 J. Plasma Phys. 26, 95.CrossRefGoogle Scholar
Scharer, J. E. & Trivelpiece, A. W. 1967 Phys. Fluids, 10, 591.Google Scholar
Sisson, A. E. & Yu, C. P. 1969 J. Plasma Phys. 3, 691.Google Scholar
Stix, T. H. 1962 The Theory of Plasma Waves, §3–4. McGraw-Hill.Google Scholar
Thompson, W. B. 1961 Rep. Prog. Phys. 24, 363.CrossRefGoogle Scholar
Williams, D. J. 1970 Solar Terrestrial Physics (ed. Dyer, E. R.), pp. 66130. Reidel.Google Scholar
Yajima, N. 1966 Prog. Theoret. Phys. 36, 1.CrossRefGoogle Scholar