Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T14:37:20.975Z Has data issue: false hasContentIssue false

Effect of steady flow and Newton's cooling on the propagation and damping of small-amplitude prominence plasma oscillations

Published online by Cambridge University Press:  01 August 2009

K. A. P. SINGH
Affiliation:
Indian Institute of Astrophysics, Bangalore 560 034, India ([email protected])
B. N. DWIVEDI
Affiliation:
Department of Applied Physics, Institute of Technology, Banaras Hindu University, Varanasi 221005, India ([email protected])

Abstract

We study the propagation and damping of small-amplitude prominence oscillations invoking steady flow and radiative losses due to Newton's cooling with constant relaxation time. We find that the strength of steady flow has a large influence on the propagation (e.g. period, phase velocity) of wave modes. In the presence of steady flow, the thermal mode is a propagating wave and hence it can be observed in solar prominences. The thermal mode contributes to the non-thermal line broadening in the solar atmosphere. The steady flow does not affect the damping time of the wave modes. The damping of slow and thermal modes is highly dependent on the radiative relaxation time. The thermal perturbation, in the presence of steady flow, is found to be larger in the case of the thermal mode than in the slow and fast modes. The energy flux (~300 W m−2) associated with the thermal mode is sufficient to heat the quiet regions of the Sun. The slow mode contribution to non-thermal broadening has been estimated. The non-thermal broadening is found to be large in the case of the prominence with large characteristic length. The steady flow, in the presence of Newton's cooling, breaks the symmetry between the forward and backward propagating modes. No modes with negative energy have been found. For strong flows (above 10 km s−1), the canonical backward wave propagates in the forward direction, which can play an important role in wave detection and prominence seismology.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Oliver, R. and Ballester, J. L. 2002 Oscillations in quiescent Solar prominences: observations and theory. Solar Phys. 206, 45.CrossRefGoogle Scholar
[2]Banerjee, D., Erdélyi, R., Oliver, R. and O'Shea, E. 2007 Present and future observing trends in atmospheric magnetoseismology. Solar Phys. 246, 3.CrossRefGoogle Scholar
[3]Terradas, J., Molowny-Horas, R., Wiehr, E., Balthasar, H., Oliver, R. and Ballester, J. L. 2002 Two-dimensional distribution of oscillations in a quiescent solar prominence. Astron. Astrophys. 393, 637.CrossRefGoogle Scholar
[4]Terradas, J., Oliver, R. and Ballester, J. L. 2001 Radiative damping of quiescent prominence oscillations. Astron. Astrophys. 378, 635.CrossRefGoogle Scholar
[5]Carbonell, M., Terradas, J., Oliver, R. and Ballester, J. L. 2006 Spatial damping of linear non-adiabatic magnetoacoustic waves in a prominence medium. Astron. Astrophys. 460, 573.CrossRefGoogle Scholar
[6]Singh, K. A. P. 2006 Spatial damping of linear compressional magnetoacoustic waves in quiescent prominences. J. Astrophys. Astron. 27, 321.CrossRefGoogle Scholar
[7]Singh, K. A. P. 2007 Damping of MHD waves in solar prominences. PhD thesis, Banaras Hindu University, Varanasi, India.Google Scholar
[8]Singh, K. A. P., Dwivedi, B. N. and Hasan, S. S. 2007 Spatial damping of compressional MHD waves in prominences. Astron. Astrophys. 473, 931.CrossRefGoogle Scholar
[9]Singh, K. A. P., Erdélyi, R. and Dwivedi, B. N. 2009 Effect of steady flow on small-amplitude prominence oscillations. Astron. Astrophys. (under revision).Google Scholar
[10]Forteza, P., Oliver, R., Ballester, J. L. and Khodachenko, M. L. 2007 Damping of oscillations by ion–neutral collisions in a prominence plasma. Astron. Astrophys. 461, 731.CrossRefGoogle Scholar
[11]Lin, Y., Engvold, O., Rouppe van der Voort, L. H. M., Wiik, J. E. and Berger, T. E. 2005 Thin threads of solar filaments. Solar Phys. 226, 239.CrossRefGoogle Scholar
[12]Okamoto, T. J., Tsuneta, S., Berger, T. E., Ichimoto, K., Katsukawa, Y., Lites, B. W., Nagata, S., Shibata, K., Shimizu, T., Shine, R. A., Suematsu, Y., Tarbell, T. D. and Title, A. M. 2007 Coronal transverse magnetohydrodynamic waves in a solar prominence. Science 318, 1577.CrossRefGoogle Scholar
[13]Lin, Y., Engvold, O., Rouppe van der Voort, L. H. M. and van Noort, M. 2007 Evidence of traveling waves in filament threads. Solar Phys. 246, 65.CrossRefGoogle Scholar
[14]Erdélyi, R., Goossens, M. and Ruderman, M. S. 1995 Analytic solutions for resonant Alfvén waves in 1D magnetic flux tubes in dissipative stationary MHD. Solar Phys. 161, 123.CrossRefGoogle Scholar
[15]Bünte, M. and Bogdan, T. J. 1994 Magneto-atmospheric waves subject to Newtonian cooling. Astron. Astrophys. 283, 642.Google Scholar
[16]Erdélyi, R., Doyle, J. G., Perez, M. E. and Wilhelm, K. 1998 Center-to-limb line width measurements of solar chromospheric. Transition region and coronal lines. Astron. Astrophys. 337, 287.Google Scholar
[17]Banerjee, D., Hasan, S. S. and Christensen-Dalsgaard, J. 1997 Effect of Newtonian cooling on waves in magnetized isothermal atmosphere. Solar Phys. 176, 285.Google Scholar
[18]Nakariakov, V. M. and Roberts, B. 1995 Magnetosonic waves in structured atmospheres with steady flow I. Solar Phys. 159, 213.CrossRefGoogle Scholar
[19]Joarder, P. S., Nakariakov, V. M. and Roberts, B. 1997 A manifestation of negative energy waves in the solar atmosphere. Solar Phys. 176, 285.CrossRefGoogle Scholar
[20]Terra-Homem, M., Erdélyi, R. and Ballai, I. 2003 Linear and non-linear MHD wave propagation in steady-state magnetic cylinders. Solar Phys. 217, 199.CrossRefGoogle Scholar