Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T05:57:09.783Z Has data issue: false hasContentIssue false

Effect of guide field on three-dimensional electron shear flow instabilities in electron current sheets

Published online by Cambridge University Press:  20 November 2015

Neeraj Jain*
Affiliation:
Max Planck/Princeton Center for Plasma Physics, Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen, Germany
Jörg Büchner
Affiliation:
Max Planck/Princeton Center for Plasma Physics, Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen, Germany
*
Email address for correspondence: [email protected]

Abstract

We examine, in the limit of electron plasma ${\it\beta}_{e}\ll 1$, the effect of an external guide field and current sheet thickness on the growth rates and nature of three-dimensional (3-D) unstable modes of an electron current sheet driven by electron shear flow. The growth rate of the fastest growing mode drops rapidly with current sheet thickness but increases slowly with the strength of the guide field. The fastest growing mode is tearing type only for thin current sheets (half-thickness ${\approx}d_{e}$, where $d_{e}=c/{\it\omega}_{pe}$ is the electron inertial length) and zero guide field. For finite guide field or thicker current sheets, the fastest growing mode is a non-tearing type. However, growth rates of the fastest 2-D tearing and 3-D non-tearing modes are comparable for thin current sheets ($d_{e}<\text{half thickness}<2\,d_{e}$) and small guide field (of the order of the asymptotic value of the component of magnetic field supporting the electron current sheet). It is shown that the general mode resonance conditions for tearing modes depend on the effective dissipation mechanism. The usual tearing mode resonance condition ($\boldsymbol{k}\boldsymbol{\cdot }\boldsymbol{B}_{0}=0$, $\boldsymbol{k}$ is the wavevector and $\boldsymbol{B}_{0}$ is the equilibrium magnetic field) can be recovered from the general resonance conditions in the limit of weak dissipation. The conditions (relating current sheet thickness, strength of the guide field and wavenumbers) for the non-existence of tearing mode are obtained from the general mode resonance conditions. We discuss the role of electron shear flow instabilities in magnetic reconnection.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basova, S. V., Varentsova, S. A., Gordeev, A. V., Gulin, A. V. & Shuvaev, V. Yu. 1991 Inertial electron instability in low-density current-carrying plasmas. Fiz. Plazmy 17, 615.Google Scholar
Bohlin, H., Stechow, A. V., Rahbarnia, K., Grulke, O. & Klinger, T. 2014 VINETA-II: a linear magnetic reconnection experiment. Rev. Sci. Instrum. 85, 023501.CrossRefGoogle ScholarPubMed
Büchner, J. & Daughton, W. S. 2006 Role of current aligned instabilities. In Reconnection of Magnetic Fields (ed. Birn, J. & Priest, E. R.), p. 144. Cambridge University Press.Google Scholar
Buneman, O. 1958 Instability, turbulence and conductivity in current-carrying plasmas. Phys. Rev. Lett. 1, 8.CrossRefGoogle Scholar
Che, H., Drake, J. F. & Swisdak, M. 2011 A current filamentation mechanism for breaking magnetic field lines during reconnection. Nature 474, 184.Google Scholar
Chen, L. J., Bessho, N., Lefebvre, B., Vaith, H., Asnes, A., Santolik, O., Fazakerley, A., Puhl-Quinn, P. A., Bhattacharjee, A., Khotyaintsev, Y., Daly, P. & Torbert, R. B. 2009 Multispacecraft observations of the electron current sheet, neighboring magnetic islands and electron acceleration during magnetotail reconnection. Phys. Plasmas 16, 056501.Google Scholar
Chen, L. J., Daughton, W., Lefebvre, B. & Torbert, R. B. 2011 The inversion layer of electric fields and electron phase–space-hole structure during two-dimensional collisionless magnetic reconnection. Phys. Plasmas 18, 012904.Google Scholar
Das, A. & Kaw, P. 2001 Nonlocal sausage-like instability of current channels in electron magnetohydrodynamics. Phys. Plasmas 8, 4518.Google Scholar
Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B. & Bowers, K. J. 2011 Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7, 539.CrossRefGoogle Scholar
Dorfman, S., Ji, H., Yamada, M., Yoo, J., Lawrence, E., Myers, C. & Tharp, T. D. 2013 Three-dimensional, impulsive magnetic reconnection in a laboratory plasma. Geophys. Res. Lett. 40, 233.CrossRefGoogle Scholar
Drake, J. F., Kleva, R. G. & Mandt, M. E. 1994 Structure of thin current layers: implications for magnetic reconnection. Phys. Rev. Lett. 73, 1251.CrossRefGoogle ScholarPubMed
Furth, H. P., Killeen, J. & Rosenbluth, M. N. 1963 Finite resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459.Google Scholar
Gaur, G. & Das, A. 2012 Linear and nonlinear studies of velocity shear driven three dimensional electron-magnetohydrodynamics instability. Phys. Plasmas 19, 072103.CrossRefGoogle Scholar
Jain, N. & Büchner, J. 2014a Nonlinear evolution of three dimensional instabilities of thin and thick electron scale current sheets: Plasmoid formation and current filamenttaion. Phys. Plasmas 21, 072306.Google Scholar
Jain, N. & Büchner, J. 2014b Three dimensional instabilities of an electron scale current sheet in collisionless magnetic reconnection. Phys. Plasmas 21, 062116.Google Scholar
Jain, N., Das, A. & Kaw, P. 2004 Kink instability in electron magnetohydrodynamics. Phys. Plasmas 11, 4390.Google Scholar
Jain, N., Das, A., Kaw, P. & Sengupta, S. 2003 Nonlinear electron magnetohydrodynamic simulations of sausage-like instability of current channels. Phys. Plasmas 10, 29.CrossRefGoogle Scholar
Jain, N., Das, A., Sengupta, S. & Kaw, P. 2012 Nonlinear electron-magnetohydrodynamic simulations of three dimensional current shear instability. Phys. Plasmas 19, 092305.Google Scholar
Kingsep, A. S., Chukbar, K. V. & Yan’kov, V. V. 1990 Reviews of Plasma Physics, vol. 16, p. 243. Consultants Bureau.Google Scholar
Li, B. & Horiuchi, R. 2008 Electron force balance in steady collision-less driven reconnection. Phys. Rev. Lett. 101, 215001.CrossRefGoogle Scholar
Liu, Y.-H., Daughton, W., Karimabadi, H., Li, H. & Roytershteyn, V. 2013 Bifurcated structure of the electron diffusion region in three dimensional magnetic reconnection. Phys. Rev. Lett. 110, 265004.Google Scholar
Markidis, S., Henri, P., Lapenta, G., Divin, A., Goldman, M., Newman, D. & Laure, E. 2013 Kinetic simulations of plasmoid chain dynamics. Phys. Plasmas 20, 082105.Google Scholar
Yoo, J., Yamada, M., Ji, H. & Myres, C. E. 2013 Observation of ion acceleration and ion heating during collisionless magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 110, 215007.Google Scholar