Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T00:45:57.766Z Has data issue: false hasContentIssue false

Effect of dissipation due to firehose instability on perturbation half-jet flow of a collisionless plasma

Published online by Cambridge University Press:  13 March 2009

Shigeki Morioka
Affiliation:
Space Sciences Division, Ames Research Center, NASA, Moffett Field, California 94035
John R. Spreiter
Affiliation:
Department of Applied Machanics, Stanford University, Stanford, California 94305

Abstract

The effects of dissipation due to a week firehose instability on steady planar flow of a collisionless plasma are investigated on the basis of the quasi-linear fluid equations. Dissipation terms remain non-linear even within the perturbation theory, and their effects tend to resemble relaxation effects in an ordinary reacting gas rather than ordinary viscous dissipation. As an example, a steady half-jet flow with aligned magnetic field is considered. It is found that the disturbed field decays within a finite distance for some upstream conditions, but grows without limit for others.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B. 1967 J. Plasma Phys. 1, 361.CrossRefGoogle Scholar
Abraham-Shrauner, B. 1968 a J. Geophys. Res. 73, 6299.CrossRefGoogle Scholar
Abraham-Shrauner, B. 1968 b Washington Univ., Dept. Elec. Eng. Technical Report No. 68–10.Google Scholar
Barnes, A. 1968 Phys. Fluids 11, 2427.CrossRefGoogle Scholar
Chew, G. F., Goldberger, M. L. & Low, F. E. 1956 Proc. Soc. Roy. A 236, 435.Google Scholar
Davidson, R. C. & Völk, H. J. 1968 Phys. Fluids 11, 2259.CrossRefGoogle Scholar
Drummond, W. E. & Pines, D. 1962 Nucl. Fusion, Suppl. 1049.Google Scholar
Frieman, E., Davidson, R. & Langdon, B. 1966 Phys. Fluids 9, 1475.CrossRefGoogle Scholar
Kennel, C. F. & Greene, J. M. 1966 Ann. Phys. (N.Y.) 38, 63.CrossRefGoogle Scholar
Kennel, C. F. & Sagdeev, R. Z. 1967 J. Geophys. Res. 72, 3303.CrossRefGoogle Scholar
Macmahon, A. 1965 Phys. Fluids 8, 1840.CrossRefGoogle Scholar
Morioka, S. & Spreiter, J. P. 1970 J. Plasma Phys. 4, 403.CrossRefGoogle Scholar
Shapiro, V. D. & Shevchenko, V. I. 1964 Sov. Phys. JETP 18, 1109.Google Scholar
Tidman, D. A. 1967 Phys. Fluids 10, 547.CrossRefGoogle Scholar
Vedenov, A. A., Velikhov, E. P. & Sagdeev, R. Z. 1962 Nucl. Fusion, Suppl. 465.Google Scholar
Vincenti, W. G. & Kruger, C. H. 1965 Introduction to Physical Gas Dynamics. Wiley.Google Scholar