Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T14:13:48.260Z Has data issue: false hasContentIssue false

The effect of a velocity-dependent charge-exchange kernel on neutral-atom transport in a half-space plasma: exact solution

Published online by Cambridge University Press:  13 March 2009

A. K. Prinja
Affiliation:
Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A.
M. M. R. Williams
Affiliation:
Nuclear Engineering Department, Queen Mary and Westfield College, University of London, London El 4NS, U.K.

Abstract

A symmetric factorization of the velocity-dependent charge-exchange kernel (the so-called separable-kernel model) is used in the Boltzmann equation for neutral atoms to obtain an exact solution for a half-space plasma by the Wiener-Hopf method. This work generalizes earlier work employing constant, velocity-independent charge-exchange interactions to the case of an arbitrary velocity dependence of the Maxwellian averaged charge-exchange reaction rate. The effects of velocity dependence on the speed-angle distribution of escaping neutrals and the total charge-exchange rate in the half-space are shown to be significant. It is also shown how the Wiener-Hopf method can be applied to such problems with a realistic Maxwellian plasma background, without first approximating the ion distribution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arkuszewski, J. 1967 Nucl. Sci. Engng 27, 104.CrossRefGoogle Scholar
Audenearde, K., Emmert, G. A. & Gordinier, M. 1980 J. Comput. Phys. 34, 268.CrossRefGoogle Scholar
Burrell, K. H. 1978 J. Comput. Phys. 27, 88.CrossRefGoogle Scholar
Burrell, K. H. & Chu, C. 1979 Phys. Fluids, 22, 263.CrossRefGoogle Scholar
Busbridge, I. 1960 The Mathematics of Radiative Transfer. Cambridge University Press.Google Scholar
Case, K. M. & Zweifel, P. 1967 Linear Transport Theory. Addison-Wesley.Google Scholar
Chandrasekhar, S. 1960 Radiative Transfer. Dover.Google Scholar
Connor, J. W. 1977 Plasma Phys. 19, 853.CrossRefGoogle Scholar
Corngold, N., Michael, P. & Wollmann, W. 1963 Nucl. Sci. Engng, 15, 13.CrossRefGoogle Scholar
Dnestroviskii, Y. N., Kostomarov, D. P. & Pavlova, N. L. 1972 Atomic Energy, 32, 301.Google Scholar
Garcia, R. D. M., Pomraning, G. C. & Siewert, C. E. 1982 Plasma Phys. 24, 903.CrossRefGoogle Scholar
Heifetz, D., Post, D., Pethavic, M., Weisheit, J. & Bateman, G. 1982 J. Comput. Phys. 46, 309.CrossRefGoogle Scholar
Janev, R. K., Langer, W. D., Evans, K. & Post, D. E. 1987 Elementary Processes in Hydrogen-Helium Plasmas: Cross-Sections and Rate Coefficients. Springer.CrossRefGoogle Scholar
Lehnert, B. 1975 Physica Scripta, 12, 327.CrossRefGoogle Scholar
Muskhelishvili, I. 1953 Singular Integral Equations. Noordhoof.Google Scholar
Noble, B. 1958 The Wiener-Hopf Technique. Pergamon.Google Scholar
Prinja, A. K. 1987 Phys. Fluids, 30, 840.CrossRefGoogle Scholar
Reiter, D. & Nicolai, A. 1982 J. Nucl. Mater. 111/112, 434.CrossRefGoogle Scholar
Rehker, S. & Wobig, H. 1973 Plasma Phys. 15, 1083.CrossRefGoogle Scholar
Riviere, A. C. 1971 Nucl. Fusion, 11, 363.CrossRefGoogle Scholar
Roos, B. W. 1969 Analytic Functions and Distributions in Physics and Engineering. Wiley.Google Scholar
Tamor, S. 1981 J. Comput. Phys. 40, 104.CrossRefGoogle Scholar
Wagner, F. et al. 1982 Phys. Rev. Lett. 49, 1408.CrossRefGoogle Scholar
Williams, M. M. R. 1964 Nucl. Sci. Engng. 18, 260.CrossRefGoogle Scholar
Williams, M. M. R. 1971 Mathematical Methods in Particle Transport Theory. Wiley-Interscience.Google Scholar
Zubarev, D. N. & Klimov, V. N. 1961 Plasma Physics and the Problem of Controlled Thermonuclear Reactions (ed. Leontovich, M. A.), vol. 1, p. 162. Pergamon.Google Scholar