Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T14:09:10.844Z Has data issue: false hasContentIssue false

Dust acoustic instability with non-extensive distribution

Published online by Cambridge University Press:  20 August 2012

SAN QIU LIU
Affiliation:
Department of Physics & School of Materials Science and Engineering, Nanchang University, Nanchang, 330047, China ([email protected])
HUI BIN QIU
Affiliation:
Department of Physics, Nanchang University, Nanchang, 330047, China

Abstract

The instability of dust acoustic waves driven by electrons and ions with different drift velocities in dusty non-extensive plasma is investigated based on the kinetic theory. The non-extensivity parameters of non-extensive distribution for three plasma components are different from each other. The instability growth rate is shown to be dependent on the non-extensivity parameters as well as on the ion--electron number density ratio. In the extensive limit (q=1), the result in Maxwellian distribution plasma is recovered. The instability growth rate is found to decrease as the population of suprathermal electrons and dust grains increases, but it enhances when the number of suprathermal ions increases and electron density decreases.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amour, R. and Tribeche, M. 2010 Variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive electron velocity distribution. Phys. Plasmas 17, 063702.CrossRefGoogle Scholar
Bains, A. S., Tribeche, M. and Gill, T. S. 2011 Modulational instability of electron-acoustic waves in a plasma with a q-nonextensive electron velocity distribution. Phys. Lett. A 375, 20592063.CrossRefGoogle Scholar
Chu, J. H., Du, J.-B. and Lin, I. 1994 Coulomb solids and low-frequency fluctuations in RF dusty plasmas. J. Phys. D: Appl. Phys. 27, 296300.CrossRefGoogle Scholar
D'Angelo, N. 1990 Low-frequency electrostatic waves in dusty plasmas. Planet. Space Sci. 38, 11431146.CrossRefGoogle Scholar
D'Angelo, N. 1995 COMMENT Coulomb solids and low-frequency fluctuations in RF dusty plasmas. J. Phys. D: Appl. Phys. 28, 10091010.CrossRefGoogle Scholar
Du, J. 2004 Nonextensivity in nonequilibrium plasma systems with Coulombian long-range interactions. Phy. Lett. A 329, 262267.CrossRefGoogle Scholar
Gell-Mann, M. and Tsallis, C. 2004 Nonextensive Entropy-Interdisciplinary Applications. New York: Oxford University Press.CrossRefGoogle Scholar
Goertz, C. K. 1989 Dusty plasma in the Solar system. Rev. Geophys. 27, 271292.CrossRefGoogle Scholar
Goertz, C. K., Linhua-Shan, and Havnes, O. 1988 Electrostatic forces in planetary rings. Geophys. Res. Lett. 15, 8487.CrossRefGoogle Scholar
Gong, J. and Du, J. 2012 Dust charging processes in the nonequilibrium dusty plasma with nonextensive power-law distribution. Phys. Plasmas 19, 023704.CrossRefGoogle Scholar
Horanyi, M. 1996 Charged dust dynamics in the solar system. Annu. Rev. Astron. Astrophys. 34, 383418.CrossRefGoogle Scholar
Khrapak, S. A., Ivlev, A. V., Yaroshenko, V. V. and Morfill, G. E. 2009 Influence of a polarization force on dust acoustic waves. Phys. Rev. Lett. 102, 245004.CrossRefGoogle ScholarPubMed
Krasheninnikov, S. I., Tomita, Y., Smirnov, R. D. and Janev, R. K. 2007 On dust dynamics in tokamak edge plasmas. Phys. Plasmas 14, 032112.Google Scholar
Lavagno, A. and Quarati, P. 2000 Nonextensive statistics in stellar plasma and solar neutrinos. Nucl. Phys. B (Proc. Suppl.) 87, 209211.CrossRefGoogle Scholar
Lee, M.-J. 2007 Landau damping of dust acoustic waves in a Lorentzian plasma. Phys. Plasmas 14, 032112.CrossRefGoogle Scholar
Leubner, M. P. 2002 A nonextensive entropy approach to kappa-distributions. Astrophys. Space Sci. 282, 573579.CrossRefGoogle Scholar
Li, X. Q. 2004 Collapsing Dynamics of Plasmons. Beijing, China: Chinese Science and Technology Press.Google Scholar
Lifshitz, E. M. and Pitaevskii, L. P. 1981 Physical Kinetics. Oxford, UK: Pergamon.Google Scholar
Lima, J. A. S., Silva, R. Jr. and Santos, J. 2000 Plasma oscillations and nonextensive statistics. Phys. Rev. E 61, 32603263.CrossRefGoogle Scholar
Liu, S. Q. and Chen, X. C. 2011a Dispersion relation of longitudinal oscillation in relativistic plasmas with nonextensive distribution. Physica A 390, 17041712.CrossRefGoogle Scholar
Liu, S. Q. and Chen, X. C. 2011b Dispersion relation of transverse oscillation in relativistic plasmas with nonextensive distribution. J. Plasma Phys. 77, 653662.CrossRefGoogle Scholar
Liu, L. and Du, J. 2008 Ion acoustic waves in the plasma with the power-law q-distribution in nonextensive statistics. Physica A 387, 48214827.Google Scholar
Liu, Z. and Du, J. 2009 Dust acoustic instability driven by drifting ions and electrons in the dust plasma with Lorentzian kappa distribution. Phys. Plasmas 16, 123707.CrossRefGoogle Scholar
Liu, S. Q. and Li, J. 2011 Dust acoustic instability with Lorentzian kappa distribution. Phys. Scr. 84, 035504.CrossRefGoogle Scholar
Liu, Y., Liu, S. Q. and Dai, B. 2011 Arbitrary amplitude kinetic Alfvn solitons in a plasma with a q-nonextensive electron velocity distribution. Phys. Plasmas 18, 092309.CrossRefGoogle Scholar
Livadiotis, G. and McComas, D. J. 2009 Beyond kappa distributions: exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 114, A11105.CrossRefGoogle Scholar
Mendis, D. A. and Rosenberg, M. 1994 Cosmic dusty plasmas. Annu. Rev. Astron. Astrophys. 32, 419463.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543546.CrossRefGoogle Scholar
Rosenberg, M. 1993 Ion-and dust-acoustic instabilities in dusty plasmas. Planet. Space Sci. 41, 229233.CrossRefGoogle Scholar
Rosenberg, M. and Kalman, G. 1997 Dust acoustic waves in strongly coupled dusty plasmas. Phys. Rev. E 56, 71667173.CrossRefGoogle Scholar
Sergeev, V. Y., Skokov, V. G., Timokhin, V. M., Kuteev, B. V., Martynenko, V. Y. and Burhenn, R. 2006 Dust mode of carbon pellet ablation in the W7-AS stellarator. Tech. Phys. 51, 14621467.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Shukla, P. K. and Rosenberg, M. 1999 Boundary effects on dust-ion-acoustic and dust-acoustic waves in collisional dusty plasmas. Phys. Plasmas 6, 10381040.CrossRefGoogle Scholar
Silva, R., Alcaniz, J. S. and Lima, J. A. S. 2005 Constraining nonextensive statistics with plasma oscillation data. Physica A 356, 509516.CrossRefGoogle Scholar
Silva, R., Plastino, A. R. and Lima, J. A. S. 1998 A Maxwellian path to the q-nonextensive velocity distribution function. Phys. Lett. A 249, 401408.CrossRefGoogle Scholar
Tang, Z., Xu, Y., Ruan, L., Buren, G., Wang, F. and Xu, Z. 2009 Spectra and radial flow in relativistic heavy ion collisions with Tsallis statistics in a blast-wave description. Phys. Rev. C 79, 051901 (R).CrossRefGoogle Scholar
Thomas, E., Fisher, R. and Merlino, R. L. 2007 Observations of dust acoustic waves driven at high frequencies: finite dust temperature effects and wave interference. Phys. Plasmas 14, 123701.CrossRefGoogle Scholar
Tribeche, M. and Bacha, M. 2010 Nonlinear dust acoustic waves in a charge varying dusty plasma with suprathermal electrons. Phys. Plasmas 17, 073701.CrossRefGoogle Scholar
Tsallis, C. 1988 Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479487.CrossRefGoogle Scholar
Tsallis, C. 2009 Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. New York: Springer.Google Scholar
Xue, J. K. 2003 Modulation of dust acoustic waves with non-adiabatic dust charge fluctuations. Phys. Lett. A 320, 226233.CrossRefGoogle Scholar