Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T05:56:55.307Z Has data issue: false hasContentIssue false

Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation

Published online by Cambridge University Press:  21 September 2015

U. Zakir*
Affiliation:
Department of Physics, University of Peshawar, Khyber Pakhtun Khwa 25000, Pakistan Department of Physics, University of Malakand Chakdara Dir(L), Khyber Pakhtun Khwa 18800, Pakistan
Q. Haque
Affiliation:
Theoretical Physics Division, PINSTECH, Islamabad, Pakistan National Center for Physics, Shahdrah Valley Road, Islamabad 44000, Pakistan
N. Imtiaz
Affiliation:
Theoretical Physics Division, PINSTECH, Islamabad, Pakistan
A. Qamar
Affiliation:
Department of Physics, University of Peshawar, Khyber Pakhtun Khwa 25000, Pakistan National Center for Physics, Shahdrah Valley Road, Islamabad 44000, Pakistan
*
Email address for correspondence: [email protected]

Abstract

The properties of dust acoustic and drift waves are investigated in a charge varying magnetized dusty plasma. The plasma is composed of non-thermal electrons and ions with dynamic dust particles. The mathematical expression which describes the dust charge fluctuation is obtained using ${\it\kappa}$-distribution for both the electrons and ions. A dispersion relation is derived and analysed numerically by choosing space plasma parameters. It is found that the inclusion of variable dust charge along with the non-thermal effects of electrons and ions significantly affect linear/nonlinear properties of the dust acoustic and dust drift waves. The effects of different physical parameters including spectral index (${\it\kappa}$), dust charge number ($Z_{d}$), electron density ($n_{e}$) and ion temperature ($T_{i}$) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn’s magnetosphere.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anuar, A. K.2013 ‘A Study of Dusty Plasma Environment’ thesis submitted to Lancaster University, UK for the degree of Doctor of Philosophy.Google Scholar
Ali, S. 2009 Dust charge effects on test charge potential in a multi-ion dusty plasma. Phys. Plasmas 16, 113706113710.Google Scholar
Barkan, A., D’Angelo, N. & Merlino, R. L. 1994 Charging of dust grains in a plasma. Phys. Rev. Lett. 73, 30933096.Google Scholar
Bellan, P. M. 2006 Fundamentals of Plasma Physics. Cambridge University Press.Google Scholar
Bernhardt, P. A., Ganguli, G., Kelley, M. C. & Swartz, E. W. 1995 Enhanced radar backscatter fron space shuttle exhaust in the ionosphere. J. Geophys. Res. 100, 2381123818.Google Scholar
Bouchoule, A. 1999 Dusty Plasmas. Wiley.Google Scholar
Cairns, R. A., Mamun, A. A., Bingham, R., Bostrm, R., Dendy, R. O., Nairn, C. M. C. & Shukla, P. K. 1995 Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 27092712.Google Scholar
Chakrabarti, N. 1999 Steady state drift vortices in plasmas with shear flow in equilibrium. Phys. Plasmas 6, 417419.Google Scholar
Dovner, P. O., Eriksson, A. I., Bostrom, R. & Holback, B. 1994 Freja multiprobe observations of electrostatic solitary structures. J. Geophys. Res. Lett. 21, 18271830.Google Scholar
Goertz, C. K. & Vasyliunas, V. M. 1981 Plasma observation near Saturn, initial results from Vogader I. Science 212, 217224.Google Scholar
Goertz, C. K. 1989 Dusty plasma in solar system. Rev. Geophys. 27, 271292.Google Scholar
Havnes, O., Sheim, L. I. & Hartquist, T. W. 1996 Meter-scale variations of the charge carried by mesospheric dust. Planet Space Sci. 44, 11911194.Google Scholar
Hellberg, M. A. & Mace, R. L. 2002 Generalized plasma dispersion function for a plasma with a kappa-Maxwellian velocity distribution. Phys. Plasmas 9 (5), 14951504.Google Scholar
Horton, W. 1999 Drift waves and transport. Rev. Mod. Phys. 71, 735778.Google Scholar
Jana, M. R., Sen, A. & Kaw, P. M. 1993 Collective effects due to charge-fluctuation dynamics in a dusty plasma. Phys. Rev. E 48, 39303933.Google Scholar
Justin, R. A. & Krasheninnikov, S. I. 2012 Drift wave dispersion relation for arbitrarily collisional plasma. Phys. Plasmas 19.5, 052504.Google Scholar
Larichev, V. D. & Reznik, G. M. 1976 2-dimensional solitary Rossby waves. Dokl. Akad. Nauk SSSR 231, 10771979.Google Scholar
Masood, W., Rizvi, H., Hasnain, H. & Batool, N. 2013 Dust drift shock waves with non-Maxwellian ion population in nonuniform collisional dusty plasmas in planetary environments. Astrophys. Space Sci. 345, 4955.Google Scholar
Mendis, D. A. & Rosenberg, M. 1992 Some aspects of dust–plasma interactions in the cosmic environment. IEEE Trans. Plasma Sci. 20, 929934.CrossRefGoogle Scholar
Melandso, F. & Shukla, P. K. 1995 Theory of dust-acoustic shocks. Planet. Space Sci. 43, 635648.Google Scholar
Mishra, S. K., Misra, S. & Sodha, M. S. 2013 Charging kinetics of dust particles in a non-Maxwellian Lorentzian plasma. Eur. Phys. J. D 67, 210.Google Scholar
Misra, A. P. & Chowdhury, A. R. 2006 Dust-acoustic solitary waves in an inhomogeneous magnetized hot dusty plasma with dust charge fluctuations. Phys. Plasmas 13, 062307.Google Scholar
Montgomry, M. D., Bame, S. J. & Hundhause, A. J. 1968 Solar wind electrons: vela 4 measurements. J. Geophys. Res. 73, 4999.Google Scholar
Northrop, T. G. 1992 Dusty plasmas. Phys. Scr. 45, 475.Google Scholar
Nakamura, Y., Bailung, H. & Shukla, P. K. 1999 Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 1602.Google Scholar
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543546.Google Scholar
Robertson, S. 1995 Experimental studies of charged dust particles. Phys. Plasmas 2, 22002206.Google Scholar
Rubab, N. & Murtaza, G. 2006 Dust-charge fluctuations with non-Maxwellian distribution functions. Phys. Scr. 73, 178183.Google Scholar
Saleem, H. & Haque, Q. 2004 Rotation-induced dust drift waves in planetary magnetospheres. J. Geophys. Res. 109, A11206-4.Google Scholar
Salimullah, M., Sandberg, I. & Shukla, P. K. 2003 Dust charge fluctuations in a magnetized dusty plasma. Phys. Rev. E 68, 027403-4.Google Scholar
Selwyn, G. S., Heidenreich, J. E. & Haller, K. L. 1991 Rastered laser light scattering studies during plasma processing: particle contamination trapping phenomena. J. Vac. Sci. Technol. A 9, 28172824.Google Scholar
Shukla, P. K. & Mamun, A. A. 2001 Introduction to Dusty Plasma Physics. CRC Press.Google Scholar
Shukla, P. K. 2000 A survey of dusty plasma physics. Phys. Plasmas 8, 17911803.Google Scholar
Shukla, P. K. & Mamun, A. A. 2003 Solitons, shocks and vortices in dusty plasmas. New J. Phys. 5, 17.117.37.Google Scholar
Shukla, P. K. & Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Institute of Physics.Google Scholar
Shukla, P. K., Yu, M. Y. & Bharuthram, R. 1991 Linear and nonlinear dust drift waves. J. Geophys. Res. 96, 2134321346.Google Scholar
Sonmor, L. J. & Laframboise, L. G. 1991 Exact current to a spherical electrode in a collisionless, large-Debye-length magnetoplasma. Phys. Fluids B 3, 24722490.Google Scholar
Tsytovic, V. N., Sato, N. & Morfill, G. E. 2003 Note on the charging and spinning of dust particles in complex plasmas in a strong magnetic field. New J. Phys. 5, 43.143.9.Google Scholar
Taibany, E. L., Wadati, M. & Sabry, R. 2007 Nonlinear dust acoustic waves in a nonuniform magnetized complex plasma with nonthermal ions and dust charge variation. Phys. Plasmas 14, 032304,1–11.Google Scholar
Vasylunais, V. M. 1968 Low energy electrons on the day side of magnetosphere. J. Geophys. Res. 73, 2839.Google Scholar
Varma, R. K., Shukla, P. K. & Krishan, V. 1993 Electrostatic oscillations in the presence of grain-charge perturbations in dusty plasmas. Phys. Rev. E 47, 3612.Google Scholar
Verheest, F. 2000 Waves in Dusty Space Plasmas. Kluwer Academic.Google Scholar
Vladimirov, S. V., Ostrikov, K. N., Yu, M. Y. & Morfill, G. E. 2003 Ion-acoustic waves in a complex plasma with negative ions. Phys. Rev. E 67, 036406.Google Scholar
Whipple, E. C. 1981 Potentials of surfaces in space. Rep. Prog. Phys. 44, 1197.Google Scholar
Whipple, E. C., Northrop, T. G. & Mendis, D. A. 1985 The electrostatics of a dusty plasma. J. Geophys. Res. 90 (A8), 74057413.Google Scholar
Walch, B., Horanyi, M. & Robertson, S. 1995 Charging of dust grains in plasma with energetic electrons. Phys. Rev. Lett. 75, 838.Google Scholar
Zouganelis, I. 2008 Measuring suprathermal electron parameters in space plasmas: implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP radio measurements in the solar wind. J. Geophys. Res. 113 (A8), 111.Google Scholar
Zhang, K. B. & Wang, H. Y. 2009 The nonlinear dust-acoustic solitary waves in dust plasma with two-temperature nonthermal ions. J. Korean Phys. Soc. 55, 1461.Google Scholar