Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T00:51:01.183Z Has data issue: false hasContentIssue false

Driven, steady-state RFP computations

Published online by Cambridge University Press:  13 March 2009

J. P. Dahlburg
Affiliation:
Dartmouth College, Hanover, New Hampshire 03755, U.S.A.
D. Montgomery
Affiliation:
Dartmouth College, Hanover, New Hampshire 03755, U.S.A.
G. D. Doolen
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.
L. Turner
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.

Abstract

A previously described pseudospectral three-dimensional MHD code is used to compute the dynamical behaviour of a channel of magnetofluid carrying an axial current and magnetic flux. This situation contains the essential MHD behaviour of the reversed-field-pinch (RFP). An externally imposed electric field is applied to an initially current-free magnetofluid, and drives currents that rise and eventually fluctuate about values corresponding to pinch ratios Θ ≈ 1·3, 2·2 and 4·5. A period of violent turbulence leads to an approximately force-free core, surrounded by an active MHD boundary layer that is not force-free. A steady state is reached that can apparently be sustained indefinitely (≥several hundred Alfvén transit times). The turbulence level and time variability in the steady state increase with increasing Θ. The average toroidal magnetic field at the wall reverses for the Θ ≈ 2·2 and 4·5 runs, but not for the Θ ≈ 1·3 one. Negative toroidal current filaments are observed. The Lundquist numbers are of the order of a few hundred.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aydemir, A. Y. & Barnes, D. C. 1984 Phys. Rev. Lett. 52, 930.CrossRefGoogle Scholar
Aydemir, A. Y., Barnes, D. C., Caramana, E. J., Mirin, A. A., Nebel, R. A., Schnack, D. D. & Sgro, A. G. 1985 Phys. Fluids, 28, 898.CrossRefGoogle Scholar
Bodin, H. A. B. & Newton, A. A. 1980 Nucl. Fusion, 20, 1255.CrossRefGoogle Scholar
Caramana, E. J. & Schnack, D. D. 1986 Phys. Fluids, 29, 3023.CrossRefGoogle Scholar
Dahlburg, J. P., Montgomery, D., Doolen, G. D. & Turner, L. 1986 Phys. Rev. Lett. 57, 428.CrossRefGoogle Scholar
Dahlburg, J. P., Montgomery, D., Doolen, G. D. & Turner, L. 1987 J. Plasma Phys. 37, 299, and references therein.CrossRefGoogle Scholar
Gimblett, C. G., Hall, P. J., Taylor, J. B. & Turner, M. F. 1987 Phys. Fluids, 30, 3186.CrossRefGoogle Scholar
Hinze, J. O. 1975 Turbulence. McGraw-Hill.Google Scholar
Riyopoulos, A., Bondeson, A. & Montgomery, D. 1982 Phys. Fluids, 25, 107.CrossRefGoogle Scholar
Rusbridge, M. G. 1969 a Plasma Phys. 11, 35.CrossRefGoogle Scholar
Rusbridge, M. G. 1969 b Plasma Phys. 11, 73.CrossRefGoogle Scholar
Rusbridge, M. G. 1977 Plasma Phys. 19, 499.CrossRefGoogle Scholar
Rusbridge, M. G. 1980 a Plasma Phys. 22, 331.CrossRefGoogle Scholar
Rusbridge, M. G. 1980 b Proceedings of Reversed Field Pinch Theory Workshop (ed. Lewis, H. R.). Los Alamos National Laboratory, Report No. LA-8944-C.Google Scholar
Sarff, J. S., Sprott, J. C. & Turner, L. 1987 Phys. Fluids, 30, 2155.CrossRefGoogle Scholar
Schnack, D. D., Barnes, D. C., Mikic, Z., Harned, D. S., Caramana, E. J. & Nebel, R. A. 1986 Comp. Phys. Commun. 43, 17.CrossRefGoogle Scholar
Tamano, T., Bard, W. D., Chu, C., Kondoh, Y., LaHaye, R. J., Lee, P. S., Saito, M. T., Schaffer, M. J. & Taylor, P. L. 1987 General Atomic Preprint GA-A18821.Google Scholar
Taylor, J. B. 1974 a Phys. Rev. Lett. 33, 1139.CrossRefGoogle Scholar
Taylor, J. B. 1974 b Proceedings of the 5th International Conference on Plasma Physics and Controlled Fusion, Tokyo, vol. 1, p. 161. IAEA.Google Scholar
Taylor, J. B. 1976 Pulsed High-Beta Plasmas (ed. Evans, D. E.), pp. 5967. Pergamon.CrossRefGoogle Scholar
Taylor, J. B. 1986 Rev. Mod. Phys. 58, 741.CrossRefGoogle Scholar
Turner, L. & Christiansen, J. P. 1981 Phys. Fluids, 24, 893.CrossRefGoogle Scholar