Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T06:28:51.019Z Has data issue: false hasContentIssue false

Drift-Alfvén waves at the arbitrary ion Larmor radius scale in dusty plasmas

Published online by Cambridge University Press:  21 January 2010

O. G. ONISHCHENKO
Affiliation:
Institute of Physics of the Earth, 10. B. Gruzinskaya Street, 123995 Moscow, Russia ([email protected], [email protected]) Space Research Institute, 84/32 Profsouznaya Street, 117997 Moscow, Russia
O. A. POKHOTELOV
Affiliation:
Institute of Physics of the Earth, 10. B. Gruzinskaya Street, 123995 Moscow, Russia ([email protected], [email protected])
V. V. KRASNOSELSKIKH
Affiliation:
LPCE/CNRS, 3A, Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France

Abstract

A set of magneto-hydrodynamic (MHD) equations that govern the nonlinear dynamics of drift-Alfvén waves with arbitrary spatial scales in comparison with the ion Larmor radius is derived. It is shown that in the linear limit a Fourier transform of these equations yields the dispersion relation which in the so-called Padé approximation corresponds to the fully kinetic theory.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cheng, C. Z. and Lui, A. T. Y. 1998 Kinetic ballooning instability for substorm onset and current disruption observed by AMPTE/CCE. Geophys. Res. Lett. 25, 40914094.CrossRefGoogle Scholar
Mikhailovskii, A. B. 1992 Electromagnetic Instabilities in an Inhomogeneous Plasma. Bristol: IOP.Google Scholar
Onishchenko, O. G., Krasnoselskikh, V. V., Pokhotelov, O. A. and Shatalov, S. I. 2009 Drift-Alfven waves in space plasmas: theory and mode identification. Ann. Geophys. 27, 639645.CrossRefGoogle Scholar
Onishchenko, O. G., Pokhotelov, O. A., Sagdeev, R. Z., Pavlenko, V. P., Stenflo, L., Shukla, P. K. and Zolotukhin, E. V. 2002 Effects of ion temperature gradients on the formation of drift-Alfven vortex structures in dusty plasmas. Phys. Plasmas 9, 15391543.CrossRefGoogle Scholar
Onishchenko, O. G., Pokhotelov, O. A., Sagdeev, R. Z., Stenflo, L., Pavlenko, V. P. and Shukla, P. K. 2003 Kolmogorov spectra of long wavelength ion-drift waves in dusty plasmas. Phys. Plasmas 9, 18261828.CrossRefGoogle Scholar
Pokhotelov, O. A., Onishchenko, O. G., Sagdeev, R. Z., Stenflo, L., Shukla, P. K. and Beloff, N. 2006 Generation of convective cells by ion-drift waves in dusty plasmas. J. Plasma Phys. 72, 771778.CrossRefGoogle Scholar
Pokhotelov, O. A., Onischenko, O. G., Shukla, P. K. and Stenflo, L. 2000 Dust Alfvén vortices in dusty plasmas with non-zero ion temperature effects. J. Plasma Phys. 64, 319332.CrossRefGoogle Scholar
Pokhotelov., O. A., Onishchenko, O. G., Shukla, P. K. and Stenflo, L. 1999 Drift-Alfvén vortices in dusty plasmas. J. Geophys. Res. 104, 1979719800.CrossRefGoogle Scholar
Shukla, P. K. and Varma, R. K. 1993 Convective cells in nonuniform dusty plasmas. Phys. Fluids B 5, 236238.CrossRefGoogle Scholar