Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T05:54:35.711Z Has data issue: false hasContentIssue false

Dispersion relation and growth rate of a relativistic electron beam propagating through a Langmuir wave wiggler

Published online by Cambridge University Press:  14 January 2015

H. Zirak
Affiliation:
Department of Physics, University of Guilan, Rasht, 41335-1914, Iran
S. Jafari*
Affiliation:
Department of Physics, University of Guilan, Rasht, 41335-1914, Iran
*
Email address for correspondence: [email protected]

Abstract

In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge–Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agarwal, R. N., Tripathi, V. K. and Agarwal, P. C. 1996 Plasma-aided radiation guiding in a free-electron laser. IEEE Trans. Plasma Sci. 24, 1197.CrossRefGoogle Scholar
Allaria, E., Callegari, C., Cocco, D., Fawley, W. M., Kiskinova, M.Masciovecchio, C. and Parmigiani, F. 2010 The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications. New J. Phys. 12, 075 002.CrossRefGoogle Scholar
Altarelli, M.et al. 2006 The European X-ray Free-electron Laser. Technical Design Report DESY 2006-097, ISBN 3-935702-7.Google Scholar
Ayvazyan, V.et al. 2006 First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D. 37, 297303.CrossRefGoogle Scholar
Babaei, S. and Maraghechi, B. 2008 Plasma-loaded free-electron laser with thermal electron beam and background plasma. Phys. Plasmas. 15, 013 102.CrossRefGoogle Scholar
Bakker, R. J.et al. 2004 FERMI@ELETTRA: 100 nm - 10 nm single pass FEL user facility. In: Proc. EPAC 2004, Lucerne, Switzerland, MOPKF037, p. 387.Google Scholar
Balakirev, V. A., Miroshnichenkoa, V. I. and lainberg, Ya. B. 1986 Stimulated scattering of a plasma wave by a relativistic electron beam. Sov. J. Plustnu Phys. 12, 563.Google Scholar
Clemens, M., Dohlus, M., Lange, S., Poplau, G., Limberg, T. and van Rienen, U. 2009 Microbunch Amplification in the European XFEL. TESLA-FEL-2009-02, p. 62.Google Scholar
Deng, T., Zhu, H. and Liang, Z. 1994 Electromagnetically pumped free-electron laser in the scheme of separate interaction space from pump wave generator. IEEE J. Quantum Electron. 30, 770.Google Scholar
Emma, P.et al. 2010 First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641.CrossRefGoogle Scholar
Freund, H. P. 2003 Efficiency enhancement in free-electron lasers driven by electromagnetic-wave wigglers. IEEE J. Quantum Electron. 23, 1590.CrossRefGoogle Scholar
Geloni, G., Kocharyan, V. and Saldin, E. 2010 Scheme for generation of highly monochromatic x-rays from a baseline XFEL undulator. DESY 10-033.Google Scholar
Geloni, G., Saldin, E., Samoylova, L., Schneidmiller, E., Sinn, H., Tschentsche, Th. and Yurkov, M. 2010 Coherence properties of the European XFEL. New J. Phys. 12, 035 021.CrossRefGoogle Scholar
Ghazavi, A., Maraghechi, B. and Mohsenpour, T. 2010 elf-field effects on instability of wave modes in a free-electron laser with background plasma. Journal of Applied Physics. 108, 123 302.CrossRefGoogle Scholar
Hand, E. 2009 X-ray free-electron lasers fire up. Nature 461, 708.CrossRefGoogle Scholar
Huang, Z. and Lindau, I. 2012 Free-electron lasers: SACLA hard-X-ray compact FEL. Nature Photonics 6, 505.CrossRefGoogle Scholar
Hwang, U. H., Mehdian, H., Willett, J. E. and Aktas, Y. M. 2002 Dispersion relation and growth in a free-electron laser with planar wiggler and in-channel guiding. Phys. Plasmas 9, 1010.CrossRefGoogle Scholar
Ishikawa, T.et al. 2012 A compact X-ray free-electron laser emitting in the sub-angstrom region. Nature Photonic 6, 540.CrossRefGoogle Scholar
Jafari, S., Jafarinia, F. and Mehdian, H. 2013 Free-electron laser with a plasma wave wiggler propagating through a magnetized plasma channel. Laser Phys. 23, 085 005.CrossRefGoogle Scholar
Jafarinia, F., Jafari, S. and Mehdian, H. 2013 Investigation of the electron trajectories and gain regimes of the whistler pumped free-electron laser. Phys. Plasmas 20, 043 106.CrossRefGoogle Scholar
Jha, P. and Kumar, P. 1998 Dispersion relation and growth in a free-electron laser with ion-channel guiding. Phys. Rev. E. 57, 2256.CrossRefGoogle Scholar
Joshi, C., Katsouleas, T., Dawson, J. M., Yan, Y. T. and Slater, J. M. 1987 Plasma wave wigglers for free-electron lasers. IEEE J. Quantum Electron. 23, 1571.CrossRefGoogle Scholar
Karbushev, N. I. 1995 Free electron lasers with static and dynamic plasma wigglers. Nucl. Instrum. Methods Phys. Res. 358, 437.CrossRefGoogle Scholar
, Lalita, Tripathi, V. K. and Aganval, P. C. 1991 Radiation guiding in a plasma wave wiggler free-electron laser. IEEE Trans. Plasma Sci. 19, 9.Google Scholar
Liu, W., Yang, Z. and Liang, Z. 2004 The investigation of thermal plasma-loaded free-electron laser: linear analysis. Int. J. Infrared Millim. Waves 25, 1053.CrossRefGoogle Scholar
Matsko, A. B. and Rostovtsev, Y. V. 1998 Electromagnetic-wave propagation and amplification in overdense plasmas: application to free electron lasers. Phys. Rev. E. 58, 7846.CrossRefGoogle Scholar
Mcneil, B. W. J. and Thompson, N. R. 2010 X-ray free-electron lasers. Nature Photonics 4, 239.CrossRefGoogle Scholar
Mehdian, H., Jafari, S. and Hsanbeigi, A. 2008 Self-fields in a free-electron laser with electromagnetic-wave wiggler and ion-channel guiding. Phys. Plasmas 15, 123 101.CrossRefGoogle Scholar
Pant, K. K. and Tripathi, V. K. 1994 Free electron laser operation in the whistler mode. IEEE Trans. Plasma Sci. 22, 217.CrossRefGoogle Scholar
Petrillo, V. and Maroli, C. 2000 Generation of very high-frequency waves by up-conversion in a plasma-loaded free-electron laser. Phys. Rev. E 62, 8612.CrossRefGoogle Scholar
Qian, B.-L., Liu, Y.-G. and Li, C.-L. 1994 Plasma-loaded free-electron laser with an electromagnetic wave wiggler and axial guide field. Phys.Plasmas 1, 4089.CrossRefGoogle Scholar
Schreiber, S. 2005 First lasing at 32 nm of the VUV-FEL at DESY. In: Proc. FEL 2005 Conference, Stanford, USA, C0508213.Google Scholar
Schreiber, S., Faatz, B. & Honkavaara, K. 2008 Operation of FLASH at 6.5 nm wavelength. In: Proc. EPAC08, Genoa, Italy, MOPC030. p. 133.Google Scholar
Sharma, A. 2012 A review study on amplification of x-ray free electron laser pulse in plasma. J. Mod. Phys. 3, 1998.CrossRefGoogle Scholar
Sharma, A. and Tripathi, V. K. 1998 A whistler pumped free electron laser. Phys. Fluids 3, 3375.Google Scholar
Shi, Z., Yang, Z. and Liang, Z. 2003 Linear theory of free electron laser with a plasma-loaded cylindrical waveguide. Int. J. Infrared Millim. Waves 24, 1823.CrossRefGoogle Scholar
Shintake, T.et al. 2008 A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region. Nature Photonics 2, 555.CrossRefGoogle Scholar
Shintake, T. & SCSS Team, 2006 First lasing at SCSS. In: Proc. FEL 2006, BESSY, Berlin, Germany, MOAAU04.Google Scholar
Shintake, T. & SCSS Group, 2006 Status of the SCSS TEST accelerator and XFEL project in Japan. In: Proc. EPAC 2006, Edinburgh, Scotland, THOPA02, p. 22741.Google Scholar
Shirasawa, K., Inagaki, T., Kitamura, H., Shintake, T., Miura, S., Matsumoto, H. and Baba, H. 2007. High power test of c-band accelerating system for Japanese XFEL project. APAC 2007, Raja Ramanna Centre for Advanced Technology(RRCAT), Indore, India, WEPMA105, p. 470.Google Scholar
Silva, H. M., Serbeto, A., Galvao, R. M. O., Mendonca, J. T. and Monteiro, L. F. 2014 Gamma-ray free-electron lasers: quantum fluid model. ArXiv:1406.0536v3.Google Scholar
Tiedtke, K.et al. 2009 The soft x-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations. New J. Phys. 11, 023 029.CrossRefGoogle Scholar
Tripathi, V. K. and Liu, C. S. 1990 Plasma effects in a free electron laser. IEEE Trans. Plasma Sci. 18, 466.CrossRefGoogle Scholar
Tsui, K. H. and Serbeto, A. 1998 Emission of an intense electromagnetic field in a plasma-loaded-wiggler free electron device. Phys. Rev. E 58, 5013.CrossRefGoogle Scholar
Vardanyan, V. and Faatz, B. 2012 FLASH reaching the transition metals. TESLA-FEL 2012-03.Google Scholar
Wang, M., Liang, Z. and Yang, Z. 2003 Effects of background plasma on free electron laser with planar wiggler. Int. J. Infrared Millim. Waves 24, 1023.CrossRefGoogle Scholar
Wen-Bing, P. and Ya-Shen, C. 1988 The effect of background plasma in the undulator on free electron lasers. Int. J. Electron. 65, 551.CrossRefGoogle Scholar
Williams, R. L., Clyton, C. E., Joshi, C. and Katsouleas, T. C. 1993 Studies of classical radiation emission from plasma wave undulators. IEEE Trans. Plasma Sci. 21, 156166.CrossRefGoogle Scholar
Winick, H.et al. 2002 Short wavelength FELs using the SLAC Linac. Nucl. Instrum. Methods Phys. Res. 347, 1675.Google Scholar
Yang, Z., Chen, H. and Liang, Z. 2002 Frequency spectrum of plasma-filled free-electron laser pumped by electromagnetic wave. Int. J. Infrared Millim. Waves 23, 1057.CrossRefGoogle Scholar
Yu, J., Gao, Q., Lu, B. and Yang, Z. 1993 Electron orbit in a combined plasma wave wiggler and an axial guide magnetic field free electron laser near magnetoresonance. IEEE Trans. Plasma Sci. 21, 167.Google Scholar
Zagorodnov, I. 2010 Ultra-short low charge operation at FLASH and the European XFEL. In: Proc. FEL 2010 Conference, Malmö, Sweden, WEOBI2.Google Scholar
Zhang, S. C., Liang, X. P., Liu, Y. W. and Jin, J. B. 1999 Power enhancement of a Doppler-frequency-up-shift scattered wave by a relativistic electron beam drifting in a reversed, tapered axial guide magnetic field. IEEE Trans. Plasma Sci. 27, 575.CrossRefGoogle Scholar