Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T14:50:55.200Z Has data issue: false hasContentIssue false

Dispersion in a relativistic degenerate electron gas

Published online by Cambridge University Press:  01 August 2007

J. McORIST
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia ([email protected]) Department of Physics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA
D. B. MELROSE
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia ([email protected])
J. I. WEISE
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia ([email protected])

Abstract

Relativistic effects on dispersion in a degenerate electron gas are discussed by comparing known response functions derived relativistically and non-relativistically. The main distinguishing feature is one-photon pair creation, which leads to logarithmic singularities in the response functions. Dispersion curves for longitudinal waves have a similar tongue-like appearance in the relativistic and non-relativistic case, with the main relativistic effects being on the Fermi speed and the cutoff frequency. For transverse waves the non-relativistic treatment has a non-physical feature near the cutoff frequency for large Fermi momenta, and this is attributed to an incorrect treatment of the electron spin. We find (with two important provisos) that one-photon pair creation is allowed in superdense plasmas, implying relatively strong coupling between transverse waves and pair creation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashcroft, N. W. and Mermin, N. D. 1976 Soldi State Physics. Philadelphia: Saunders College.Google Scholar
Baudet, G., Petrosian, V. and Salpeter, E. E. 1971 Astrophys. J. 150, 979.CrossRefGoogle Scholar
Berestetskii, V. B., Lifshitz, E. M. and Pitaevskii, L. P. 1971 Relativistic Quantum Theory. Oxford: Pergamon Press.Google Scholar
Braaten, E. 1992 Astrophys. J. 392, 70.CrossRefGoogle Scholar
Braaten, E. and Segel, D. 1993 Phys. Rev. D 48, 1478.Google Scholar
Dutta, S. I., Ratković, S. and Prakash, M. 2004 Phys. Rev. D 69 023005.CrossRefGoogle Scholar
Hayes, L. M. and Melrose, D. B. 1984 Aust. J. Phys. 37, 615.CrossRefGoogle Scholar
Itoh, N., Mutoh, H., Hikita, A. and Kohyama, Y. 1992 Astrophys. J. 395, 622.CrossRefGoogle Scholar
Jaikumar, P., Gale, C. and Page, D. 2005 Phys. Rev. D 72, 123004.Google Scholar
Jancovici, B. 1962 Nuovo Cim. 25, 428.CrossRefGoogle Scholar
Koers, H. B. J. and Wijers, R. A. M. J. 2005 Mon. Notices Roy. Astron. Soc. 364, 934.CrossRefGoogle Scholar
Kowalenko, V.Frankel, N. E. and Hines, K. C. 1985 Phys. Rep. 126, 109.CrossRefGoogle Scholar
Krivitskii, V. S. and Vladimirov, S. V. 1991 Sov. Phys. JETP 73, 821.Google Scholar
Landau, L. D. and Lifshitz, E. M. 1959 Statistical Physics. Oxford: Pergamon Press.Google Scholar
Lindhard, D. J. 1954 Mat. Fys. Medd. Dan. Vid. Selsk. 28, 1.Google Scholar
Melrose, D. B. and Hayes, L. M. 1984 Aust. J. Phys. 37, 639.CrossRefGoogle Scholar
Melrose, D. B., Weise, J. I. and McOrist, J. 2006 J. Phys. A: Math. Gen. 39, 8717.CrossRefGoogle Scholar
Pulsifer, P. and Kalman, G. 1992 Phys. Rev. A 45, 5820.CrossRefGoogle Scholar
Ratković, S.Dutta, S. I. and Prakash, M. 2003 Phys. Rev. D 67, 123002.Google Scholar
Rukhadze, A. A. and Silin, V. P. 1960 Sov. Phys. JETP 11, 463.Google Scholar
Silin, V. P. and Ursov, U. N. 1982 Kratk. Soobshch. Fiz. 1, 34 and 53.Google Scholar
Sivak, H. D. 1985 Ann. Phys. 159, 351.CrossRefGoogle Scholar
Tsytovich, V. N. 1961 Sov. Phys. JETP 13, 1249.Google Scholar
Williams, D. R. M. and Melrose, D. B. 1989 Aust. J. Phys. 42, 59.CrossRefGoogle Scholar