Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T15:25:18.722Z Has data issue: false hasContentIssue false

Detailed analytical investigation of magnetic field line random walk in turbulent plasmas: II. Isotropic turbulence

Published online by Cambridge University Press:  01 April 2009

I. KOURAKIS*
Affiliation:
Centre for Plasma Physics, Queen's UniversityBelfast BT7 1 NN, Northern Ireland, UK ([email protected], www.kourakis.eu)
R. C. TAUTZ
Affiliation:
Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected], [email protected], [email protected])
A. SHALCHI
Affiliation:
Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected], [email protected], [email protected])
*
Work carried out while at: Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany.

Abstract

The random walk of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. An isotropic model is employed for the magnetic turbulence spectrum. An analytical investigation of the asymptotic behavior of the field-line mean-square displacement 〈(Δx)2〉 is carried out, in terms of the position variable z. It is shown that 〈(Δx)2〉 varies as ~z ln z for large distance z. This result corresponds to a superdiffusive behavior of field line wandering. This investigation complements previous work, which relied on a two-component model for the turbulence spectrum. Contrary to that model, quasilinear theory appears to provide an adequate description of the field-line random walk for isotropic turbulence.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]McComb, W. D. 1990 The Physics of Fluid Turbulence. New York: Oxford University Press.CrossRefGoogle Scholar
[2]Schlickeiser, R. 2002 Cosmic Ray Astrophysics. Berlin: Springer.CrossRefGoogle Scholar
[3]Balescu, R. 1988 Transport Processes in Plasmas, Vol. 1, Classical Transport; Vol. 2, Neoclassical Transport. Amsterdam: North-Holland.Google Scholar
[4]Kourakis, I. 1999 Plasma Phys. Control. Fusion 41, 587;CrossRefGoogle Scholar
Kourakis, I. 2003 Rev. Mex. de Física 49 (suppl. 3), 130;Google Scholar
Kourakis, I. and Grecos, A. 2003 Comm. Nonlinear. Sci. Num. Sim. 8, 547.CrossRefGoogle Scholar
[5]Jokipii, J. R. 1966 Astrophys. J. 146, 480.CrossRefGoogle Scholar
[6]Jokipii, J. R. and Parker, E. N. 1968 Phys. Rev. Lett. 21, 44;CrossRefGoogle Scholar
Jokipii, J. R. and Parker, E. N. 1969 Astrophys. J. 155, 777.CrossRefGoogle Scholar
[7]Kóta, J. and Jokipii, J. R. 2000 Astrophys. J. 531, 1067.CrossRefGoogle Scholar
[8]Webb, G. M., Zank, G. P., Kaghashvili, E. Kh. and le Roux, J. A. 2006 Astrophys. J. 651, 211.CrossRefGoogle Scholar
[9]Shalchi, A. and Kourakis, I. 2007 Astron. Astrophys. 470, 405.CrossRefGoogle Scholar
[10]Ruffolo, D. et al. , 2006 Astrophys. J. 644, 971.CrossRefGoogle Scholar
[11]Ruffolo, D. et al. , 2004 Astrophys. J. 614, 420.CrossRefGoogle Scholar
[12]Corrsin, S. 1959 Atmospheric Diffusion and Air Pollution (Advanced in Geophysics, 6) (ed. Frenkel, F. and Sheppard, P.). New York: Academic Press.Google Scholar
[13]Shalchi, A. and Kourakis, I. 2007 Phys. Plasmas 14, 092903.CrossRefGoogle Scholar
[14]Kourakis, I. and Shalchi, A. 2008 Detailed analytical investigation of magnetic field line random walk in turbulent plasmas: I. Two-component slab/2D turbulence. J. Plasma Phys. 74, 657.CrossRefGoogle Scholar
[15]Abramowitz, M. and Stegun, I. A. 1974 Handbook of Mathematical Functions. New York: Dover Publications.Google Scholar
[16]Gradshteyn, I. S. and Ryzhik, I. M. 2000 Table of Integrals, Series, and Products. New York: Academic Press.Google Scholar