Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T19:15:53.429Z Has data issue: false hasContentIssue false

Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

Published online by Cambridge University Press:  16 February 2012

T. KÖNIGSTEIN
Affiliation:
Institute of Laser and Plasma Physics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany ([email protected])
O. KARGER
Affiliation:
Institute of Laser and Plasma Physics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany ([email protected])
G. PRETZLER
Affiliation:
Institute of Laser and Plasma Physics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany ([email protected])
J. B. ROSENZWEIG
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
B. HIDDING
Affiliation:
Institute of Laser and Plasma Physics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany ([email protected]) Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA

Abstract

We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beg, F. N., Bell, A. R., Dangor, A. E., Danson, C. N., Fews, A. P., Glinsky, M. E., Hammel, B. A., Lee, P., Norreys, P. A. and Tatarakis, M. 1997 A study of picosecond laser–solid interactions up to 1019 Wcm−2. Phys. Plasmas 4 (2), 447457.Google Scholar
Bolton, S. J., Janssen, M., Thorne, R., Levin, S., Klein, M., Gulkis, S., Bastian, T., Sault, R., Elachi, C., Hofstadter, M., et al. 2002 Ultra-relativistic electrons in Jupiter's radiation belts. Nature 415 (6875), 987991.CrossRefGoogle ScholarPubMed
Buck, A., Zeil, K., Popp, A., Schmid, K., Jochmann, A., Kraft, S. D., Hidding, B., Kudyakov, T., Sears, C. M. S., Veisz, L., et al. 2010 Absolute charge calibration of scintillating screens for relativistic electron detection. Rev. Sci. Instrum. 81 (3), 033301.CrossRefGoogle ScholarPubMed
Chen, Y., Reeves, G. D. and Friedel, R. H. W. 2007 The energization of relativistic electrons in the outer van allen radiation belt. Nat. Phys. 3 (9), 614617.CrossRefGoogle Scholar
Divine, N. and Garrett, H. B. 1983 Charged particle distributions in Jupiter's magnetosphere. J. Geophys. Res. 88, 68896903.CrossRefGoogle Scholar
Estabrook, K. and Kruer, W. L. 1978 Properties of resonantly heated electron distributions. Phys. Rev. Lett. 40 (1), 4245.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J. P., Burgy, F. and Malka, V. 2004 A laser-plasma accelerator producing monoenergetic electron beams. Nature 431 (7008), 541544.CrossRefGoogle ScholarPubMed
Fillius, R. W. and McIlwain, C. E. 1974 Radiation belts of Jupiter. 183(4122), 314–315.Google Scholar
Forslund, D. W., Kindel, J. M. and Lee, K. 1977 Theory of hot-electron spectra at high laser intensity. Phys. Rev. Lett. 39 (5), 284288.CrossRefGoogle Scholar
Galimberti, M., Giulietti, A., Giulietti, D. and Gizzi, L. A. 2005 Sheeba: a spatial high energy electron beam analyzer. Rev. Sci. Instrum. 76 (5), 053303.CrossRefGoogle Scholar
Garrett, H. B. 1998 Space radiation environment. Jet Propulsion Laboratory Technical Report, California Institute of Technology, California, USA.Google Scholar
Garrett, H. B., Levin, S. M., Bolton, S. J., Evans, R. W. and Bhattacharya, B. 2005 A revised model of Jupiter's inner electron belts: updating the divine radiation model. Geophys. Res. Lett. 32 (4), L04104.CrossRefGoogle Scholar
Geddes, C. G. R., Toth, C., Tilborg, J., van Esarey, E., Schroeder, C. B., Bruhwilder, D., Nieter, C., Cary, J. and Leemans, W. P. 2004 High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431 (7008), 538541.Google Scholar
Gibbon, P. and Bell, A. R. 1992 Collisionless absorption in sharp-edged plasmas. Phys. Rev. Lett. 68 (10), 15351538.CrossRefGoogle ScholarPubMed
Gibbon, P. and Förster, E. 1996 Short-pulse laser–plasma interactions. Plasma Phys. Control. Fusion 38 (6), 769793.CrossRefGoogle Scholar
Green, J. S., Ovchinnikov, V. M., Evans, R. G., Akli, K. U., Azechi, H., Beg, F. N., Bellei, C., Freeman, R. R., Habara, H., Heathcote, R., et al. . 2008 Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. Rev. Lett. 100 (1), 015003.CrossRefGoogle ScholarPubMed
Harrach, R. J. and Kidder, R. E. 1981 Simple model of energy deposition by suprathermal electrons in laser-irradiated targets. Phys. Rev. A 23 (2), 887896.Google Scholar
Hidding, B., Königstein, T., Willi, O. and Pretzler, G. 2010 Method for testing the radiation hardness of electronic devices with particle and photon beams generated by laser-plasma-interaction. German Patent AZ 10 2010 010 716.6.Google Scholar
Hidding, B., Königstein, T., Willi, O., Rosenzweig, J. B., Nakajima, K. and Pretzler, G. 2011 Laser-plasma-accelerators – a novel, versatile tool for space radiation studies. Nucl. Instrum. Methods Phys. Res. A 636 (1), 3140.CrossRefGoogle Scholar
Hidding, B., Pretzler, G., Clever, M., Brandl, F., Zamponi, F., Lübcke, A., Kämpfer, T., Uschmann, I., Förster, E., Schramm, U., et al. 2007 Novel method for characterizing relativistic electron beams in a harsh laser-plasma environment. Rev. Sci. Instrum. 78 (8), 083301.Google Scholar
Horne, R. B. 2007 Plasma astrophysics: acceleration of killer electrons. Nat. Phys. 3 (9), 590591.Google Scholar
Horne, R. B., Thorne, R. M., Glauert, S. A., Douglas Menietti, J., Shprits, Y. Y. and Gurnett, D. A. 2008 Gyro-resonant electron acceleration at jupiter. Nat. Phys. 4 (4), 301304.CrossRefGoogle Scholar
Horne, R. B., Thorne, R. M., Shprits, Y. Y., Meredith, N. P., Glauert, S. A., Smith, A. J., Kanekal, S. G., Baker, D. N., Engebretson, M. J., Posch, J. L., et al. 2005 Wave acceleration of electrons in the van allen radiation belts. Nature 437 (7056), 227230.CrossRefGoogle ScholarPubMed
Lei, F., Truscott, R. R., Dyer, C. S., Quaghebeur, B., Henderickx, D., Nieminen, R., Evans, H. and Daly, E. 2002 Mulassis: a geant4-based multi-layered shielding simulation tool. IEEE Trans. Nucl. Sci. 49 (6), 27882793.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S. P. D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B. and Dango, A. E. 2002 Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298 (5598), 15961600.CrossRefGoogle ScholarPubMed
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G., Hooker, C. J., et al. 2004 Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431 (7008), 535538.CrossRefGoogle ScholarPubMed
Mauk, B. H. and Fox, N. J. 2010 Electron radiation belts of the solar system. J. Geophys. Res. 115, A12220.Google Scholar
NASA 2011 Ae-8 radiation belt models at spdf. accessed September 1, 2011. http://modelweb.gsfc.nasa.gov/models/trap.html.Google Scholar
Pukhov, A., Sheng, Z.-M. and ter Vehn, J. M. 1999 Particle acceleration in relativistic laser channels. Phys. Plasmas 6 (7), 28472854.CrossRefGoogle Scholar
RadiaBeam Technologies. 2011 Method for testing electronic components. Extended United States patent serial no. 13/042,738. RadiaBeam Technologies, Santa Monica, California.Google Scholar
Rosenzweig, J. B., Valloni, A., Alesini, D., Andonian, G., Bernard, N., Faillace, L., Ficcadenti, L., Fukusawa, A., Hidding, B., Migliorati, M., et al. 2011 Design and applications of an x-band hybrid photoinjector. Nucl. Instrum. Methods Phys. Res. A 657 (1), 107113.CrossRefGoogle Scholar
Sheng, Z. M., Sentoku, Y., Mima, K., Zhang, J., Yu, W. and Meyer-ter Vehn, J. 2000 Angular distributions of fast electrons, ions, and bremsstrahlung x/γ-rays in intense laser interaction with solid targets. Phys. Rev. Lett. 85, 53405343.CrossRefGoogle ScholarPubMed
Tanaka, K. A., Yabuuchi, T., Sato, T., Kodama, R., Kitagawa, Y., Takahashi, T., Ikeda, T., Honda, Y. and Okuda, S. 2005 Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 76 (1), 013507.CrossRefGoogle Scholar
Tao, X., Thorne, R. M., Horne, R. B., Ni, B., Menietti, J. D., Shprits, Y. Y. and Gurnett, D. A. 2011 Importance of plasma injection events for energization of relativistic electrons in the Jovian magnetosphere. J Geophys. Res. A 116 (1).Google Scholar
Van Allen, J. A. and Frank, L. A. 1959 Radiation around the earth to a radial distance of 107,400 km. Nature 183 (4659), 430434.CrossRefGoogle Scholar
Varotsou, A., Friedel, R. H., Reeves, G.f D., Lavraud, B., Skoug, R. M., Cayton, T. E. and Bourdarie, S. 2008 Characterization of relativistic electron flux rise times during the recovery phase of geomagnetic storms as measured by the ns41 GPS satellite. J. Atmos. Sol.-Terr. Phys. 70 (14), 17451759.CrossRefGoogle Scholar
Wilks, S. C., Kruer, W. L., Tabak, M. and Langdon, A. B. 1992 Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69 (9), 13831386.CrossRefGoogle ScholarPubMed
Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., Mackinnon, A. and Snavely, R. A. 2001 Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8 (2), 542549.Google Scholar
Willi, O., Behmke, M., Gezici, L., Hidding, B., Jung, R., Königstein, T., Pipahl, A., Osterholz, J., Pretzler, G., Pukhov, A., et al. 2009 Particle and x-ray generation by irradiation of gaseous and solid targets with a 100 tw laser pulse. Plasma Phys. Control. Fusion 51 (12), 124049.CrossRefGoogle Scholar
Zeil, K., Kraft, S. D., Jochmann, A., Kroll, F., Jahr, W., Schramm, U., Karsch, L., Pawelke, J., Hidding, B. and Pretzler, G. 2010 Absolute response of fuji imaging plate detectors to picosecond-electron bunches. Rev. Sci. Instrum. 81 (1), 013307.Google Scholar