Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T13:15:25.157Z Has data issue: false hasContentIssue false

Debye-sheath properties in the Tonks–Langmuir discharge with warm neutrals

Published online by Cambridge University Press:  11 September 2013

L. KOS
Affiliation:
Association EURATOM-MESCS, LECAD Laboratory, Faculty of Mechanical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia ([email protected])
D. D. TSKHAKAYA (Sr.)
Affiliation:
Association EURATOM-ÖAW, Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria Institute of Physics, Georgian Academy of Sciences, 0177 Tbilisi, Georgia
S. KUHN
Affiliation:
Association EURATOM-ÖAW, Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
N. JELIĆ
Affiliation:
Association EURATOM-ÖAW, Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria Association EURATOM-ÖAW, Institute for Theoretical Physics–Computational Physics, Technical University of Graz, A-8010 Graz, Austria

Abstract

A kinetic theory of the Debye sheath in the Tonks–Langmuir model of the plasma-wall transition layer with hot neutrals is presented. The plasma, consisting of Boltzmann-distributed electrons and singly charged ions, is in contact with an absorbing negative wall. Dependencies of electric-potential characteristics on neutrals temperature are investigated for the first time. The results can be generalized to other sheath models.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. E. 2003 Comment on: On the consistency of the collisionless sheath model [Phys. Plasmas 9, 4427 (2002)]. Phys. Plasmas 10 (5), 15281528.CrossRefGoogle Scholar
Bissell, R. C. and Johnson, P. C. 1987 The solution of the plasma equation in plane parallel geometry with a Maxwellian source. Phys. Fluids 30 (2), 779786.CrossRefGoogle Scholar
Caruso, A. and Cavaliere, A. 1962 The structure of the collisionless plasma-sheath transition. Il Nuovo Cimento (1955–1965) 26 (6), 13891404.CrossRefGoogle Scholar
Harrison, E. R. and Thompson, W. B. 1959 The low pressure plane symmetric discharge. Proc. Phys. Soc. 74 (2), 145152.CrossRefGoogle Scholar
Jelić, N., Kos, L., Tskhakaya, D. D. (Sr.) and Duhovnik, J. 2009 The ionization length in plasmas with finite temperature ion sources. Phys. Plasmas 16 (12), 123503.CrossRefGoogle Scholar
Kos, L., Jelić, N., Kuhn, S. and Duhovnik, J. 2009 Extension of the Bissel–Johnson plasma-sheath model for application to fusion-relevant and general plasmas. Phys. Plasmas 16 (9), 093503.CrossRefGoogle Scholar
Kos, L., Tskhakaya, D. D. and Jelić, N. 2011 Potential profile near singularity point in kinetic Tonks-Langmuir discharges as a function of the ion sources temperature. Phys. Plasmas 18, 053507.CrossRefGoogle Scholar
Kuhn, S., Kamran, M., Jelić, N., Kos, L., Tskhakaya, D. and Tskhakaya, D. D. 2010 Closure of the hierarchy of fluid equations by means of the polytropic-coefficient function (PCF). AIP Conf. Proc. 1306 (1), 216231.CrossRefGoogle Scholar
Riemann, K.-U. 2003 Kinetic analysis of the collisional plasma-sheath transition. J. Phys. D: Appl. Phys. 36, 28112820.CrossRefGoogle Scholar
Riemann, K.-U. 2006 Plasma-sheath transition in the kinetic Tonks-Langmuir model. Phys. Plasmas 13 (6), 063508.CrossRefGoogle Scholar
Riemann, K.-U., Seebacher, J., Tskhakaya, D. D. (Sr.) and Kuhn, S. 2005 The plasma-sheath matching problem. Plasma Phys. Control. Fusion 47 (11), 19491970.CrossRefGoogle Scholar
Tonks, L. and Langmuir, I. 1929 A general theory of the plasma of an arc. Phys. Rev. 34 (6), 876922.CrossRefGoogle Scholar
Tskhakaya, D. D., Bint-E-Munir, F. and Kuhn, S. 2010 Magnetized plasma-wall transition layer with cold ions. J. Plasma Phys. 76 (special issue 3–4), 559567.CrossRefGoogle Scholar
Tskhakaya, D. D., Shukla, P. K. and Stenflo, L. 2001 Effect of trapped ions on shielding of a charged dust grain in a plasma. Phys. Plasmas 8 (12), 53335335.CrossRefGoogle Scholar