Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T06:12:34.777Z Has data issue: false hasContentIssue false

Cylindrical liner Z-pinch experiments for fusion research and high-energy-density physics

Published online by Cambridge University Press:  31 March 2015

G. C. Burdiak*
Affiliation:
Plasma Physics Group, Imperial College London, SW7 2BW, UK
S. V. Lebedev
Affiliation:
Plasma Physics Group, Imperial College London, SW7 2BW, UK
F. Suzuki-Vidal
Affiliation:
Plasma Physics Group, Imperial College London, SW7 2BW, UK
G. F. Swadling
Affiliation:
Plasma Physics Group, Imperial College London, SW7 2BW, UK
S. N. Bland
Affiliation:
Plasma Physics Group, Imperial College London, SW7 2BW, UK
N. Niasse
Affiliation:
Plasma Physics Group, Imperial College London, SW7 2BW, UK
L. Suttle
Affiliation:
Plasma Physics Group, Imperial College London, SW7 2BW, UK
M. Bennet
Affiliation:
Plasma Physics Group, Imperial College London, SW7 2BW, UK
J. Hare
Affiliation:
Plasma Physics Group, Imperial College London, SW7 2BW, UK
M. Weinwurm
Affiliation:
Plasma Physics Group, Imperial College London, SW7 2BW, UK
R. Rodriguez
Affiliation:
Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, 35017, Spain
J. Gil
Affiliation:
Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, 35017, Spain
G. Espinosa
Affiliation:
Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, 35017, Spain
*
Email address for correspondence: [email protected]

Abstract

A gas-filled cylindrical liner z-pinch configuration has been used to drive convergent radiative shock waves into different gases at velocities of 20–50 km s−1. On application of the 1.4 MA, 240 ns rise-time current pulse produced by the Magpie generator at Imperial College London, a series of cylindrically convergent shock waves are sequentially launched into the gas-fill from the inner wall of the liner. This occurs without any bulk motion of the liner wall itself. The timing and trajectories of the shocks are used as a diagnostic tool for understanding the response of the liner z-pinch wall to a large pulsed current. This analysis provides useful data on the liner resistivity, and a means to test equation of state (EOS) and material strength models within MHD simulation codes. In addition to providing information on liner response, the convergent shocks are interesting to study in their own right. The shocks are strong enough for radiation transport to influence the shock wave structure. In particular, we see evidence for both radiative preheating of material ahead of the shockwaves and radiative cooling instabilities in the shocked gas. Some preliminary results from initial gas-filled liner experiments with an applied axial magnetic field are also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandrov, V.V.et al. 2002 Prolonged plasma production at current-driven implosion of wire arrays on angara-5-1 facility. IEEE Trans. Plasma Sci. 30 (2), 559566. ISSN .CrossRefGoogle Scholar
Aleksandrov, V. V.et al. 2003 Experimental and numerical studies of plasma production in the initial stage of implosion of a cylindrical wire array. Plasma Phys. Rep. 29, 10341040. ISSN . url: http://dx.doi.org/10.1134/1.1633623.CrossRefGoogle Scholar
Ampleford, D. J.et al. 2014 Contrasting physics in wire array z pinch sources of 1–20 kev emission on the z facility. Phys. Plasmas (1994-present) 21 (5), 056708. url: http://scitation.aip.org/content/aip/journal/pop/21/5/10.1063/1.4876621.CrossRefGoogle Scholar
Anderson, G. W. and Neilson, F. W. 1959 Use of the ‘action integral’ in exploding wire studies. In: Proc. 1st Conf. on Exploding Wire Phenomena, Vol. 1, 97–103.Google Scholar
Bates, J. W. and Montgomery, D. C. 2000 The d'yakov-kontorovich instability of shock waves in real gases. Phys. Rev. Lett. 84, 11801183. url: http://link.aps.org/doi/10.1103/PhysRevLett.84.1180.CrossRefGoogle ScholarPubMed
Blesener, I. C.et al. 2012a Pinching of ablation streams via magnetic field curvature in wire-array z-pinches. Phys. Plasmas (1994-present) 19 (2), 022109. url: http://scitation.aip.org/content/aip/journal/pop/19/2/10.1063/1.3685726.CrossRefGoogle Scholar
Blesener, I., Kusse, B., Blesener, K., Greenly, J. and Hammer, D. 2012b Ablation and precursor formation in copper wire-array and liner z -pinches. IEEE Trans. Plasma Sci. 40 (12), 33133318. ISSN .CrossRefGoogle Scholar
Burdiak, G. C.et al. 2013a The production and evolution of multiple converging radiative shock waves in gas-filled cylindrical liner z-pinch experiments. High Energy Density Phys. 9 (1), 5262. ISSN . url: http://www.sciencedirect.com/science/article/pii/S157418181200122X.CrossRefGoogle Scholar
Burdiak, G. C.et al. 2013b Determination of the inductance of imploding wire array z-pinches using measurements of load voltage. Phys. Plasmas (1994-present) 20 (3), 032705. url: http://scitation.aip.org/content/aip/journal/pop/20/3/10.1063/1.4794957.CrossRefGoogle Scholar
Burdiak, G. C.et al. 2014 Radiative precursors driven by converging blast waves in noble gases. Phys. Plasmas (1994-present) 21 (3), 033302. url: http://scitation.aip.org/content/aip/journal/pop/21/3/10.1063/1.4867174.CrossRefGoogle Scholar
Chevalier, R. A. and Imamura, J. N. 1982 Linear analysis of an oscillatory instability of radiative shock waves. Astrophys. J. 261, 543549.CrossRefGoogle Scholar
Ciardi, A.et al. 2007 The evolution of magnetic tower jets in the laboratory. Phys. Plasmas 14 (5), 056501. url: http://link.aip.org/link/?PHP/14/056501/1.CrossRefGoogle Scholar
Cuneo, M. E.et al. 2005 Characteristics and scaling of tungsten-wire-array z-pinch implosion dynamics at 20 ma. Phys. Rev. E 71, 046406. url: http://link.aps.org/doi/10.1103/PhysRevE.71.046406.CrossRefGoogle Scholar
Cuneo, M. E.et al. 2006 Compact single and nested tungsten-wire-array dynamics at 1419ma and applications to inertial confinement fusiona. Phys. Plasmas (1994-present) 13 (5), 056318. url: http://scitation.aip.org/content/aip/journal/pop/13/5/10.1063/1.2177140.CrossRefGoogle Scholar
Drake, R. P. 2006 High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics. Shock Wave And High Pressure Phenomena. Springer Berlin Heidelberg New York. ISBN 9783540293149. url: http://books.google.co.uk/books?id=P-3OeLJZN1YC.CrossRefGoogle Scholar
Dyson, J. E. and Williams, D. A. 1997 The Physics of the Interstellar Medium. Taylor and Francis Group, New York.CrossRefGoogle Scholar
Gomez, M. R.et al. 2014 Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion. Phys. Rev. Lett. 113, 155003. url: http://link.aps.org/doi/10.1103/PhysRevLett.113.155003.CrossRefGoogle ScholarPubMed
Guderley, G. 1942 Strong spherical and cylindrical compression shocks in the vicinity of the spherical and cylindrical axis. Luftfahrtforschung 19, 302312.Google Scholar
Haines, M. G. 2011 A review of the dense z -pinch. Plasma Phys. Control. Fusion 53 (9), 093001. ur: http://stacks.iop.org/0741-3335/53/i=9/a=093001.CrossRefGoogle Scholar
Knoepfel, H. E. 2008 Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use. New York: John Wiley & Sons. ISBN 9783527617425. url: http://books.google.co.uk/books?id=UsX0fq85M2cC.Google Scholar
Koenig, M.et al. 2006 Radiative shocks: An opportunity to study laboratory astrophysics. Phys. Plasmas 13 (5), 056504. url: http://link.aip.org/link/?PHP/13/056504/1.CrossRefGoogle Scholar
Lebedev, S. V., Aliaga-Rossel, R., Bland, S. N., Chittenden, J. P., Dangor, A. E., Haines, M. G. and Mitchell, I. H. 1999 The dynamics of wire array z-pinch implosions. Phys. Plasmas (1994-present) 6 (5), 20162022. url: http://scitation.aip.org/content/aip/journal/pop/6/5/10.1063/1.873456.CrossRefGoogle Scholar
Lebedev, S. V., Beg, F. N., Bland, S. N., Chittenden, J. P., Dangor, A. E., Haines, M. G., Kwek, K. H., Pikuz, S. A. and Shelkovenko, T. A. 2001 Effect of discrete wires on the implosion dynamics of wire array z pinches. Phys. Plasmas 8, 37343747.CrossRefGoogle Scholar
Lebedev, S. V.et al. 2002 Laboratory astrophysics and collimated stellar outflows: The production of radiatively cooled hypersonic plasma jets. Astrophys. J. 564 (1), 113.CrossRefGoogle Scholar
Lebedev, S. V.et al. 2014 The formation of reverse shocks in magnetized high energy density supersonic plasma flows. Phys. Plasmas 21. url: http://dx.doi.org/10.1063/1.4874334.CrossRefGoogle Scholar
MacFarlane, J. J., Golovkin, I. E. and Woodruff, P. R. 2006 Helios-cr - a 1-d radiation-magnetohydrodynamics code with inline atomic kinetics modeling. J. Quant. Spectrosc. Radiat. Transfer 99 (13), 381397. ISSN . url: http://www.sciencedirect.com/science/article/pii/S0022407305001627.CrossRefGoogle Scholar
MacFarlane, J. J., Golovkin, I. E., Woodruff, P. R., Welch, D. R., Oliver, B. V., Mehlhorn, T. A. and Campbell, R. B. 2003 Simulation of the ionization dynamics of aluminium irradiated by intense short-pulse lasers. In: Proc. 3rd Int. Conf. on Inertial Fusion Sciences and Applications.Google Scholar
Martin, M. R.et al. 2012 Solid liner implosions on z for producing multi-megabar, shockless compressionsa. Phys. Plasmas (1994-present) 19 (5), 056310. url: http://scitation.aip.org/content/aip/journal/pop/19/5/10.1063/1.3694519.CrossRefGoogle Scholar
McBride, R. D.et al. 2012 Penetrating radiography of imploding and stagnating beryllium liners on the z accelerator. Phys. Rev. Lett. 109, 135004. url: http://link.aps.org/doi/10.1103/PhysRevLett.109.135004.CrossRefGoogle ScholarPubMed
Meerson, B. 1996 Nonlinear dynamics of radiative condensations in optically thin plasmas. Rev. Mod. Phys. 68, 215257. url: http://link.aps.org/doi/10.1103/RevModPhys.68.215.CrossRefGoogle Scholar
Mitchell, I. H., Bayley, J. M., Chittenden, J. P., Worley, J. F., Dangor, A. E., Haines, M. G. and Choi, P. 1996 A high impedance mega-ampere generator for fiber z-pinch experiments. Rev. Sci. Instrum. 67 (4), 15331541. url: http://link.aip.org/link/?RSI/67/1533/1.CrossRefGoogle Scholar
Pereira, N. R. and Davis, J. 1988 X rays from z-pinches on relativistic electron-beam generators. J. Appl. Phys. 64, 1.CrossRefGoogle Scholar
Peterson, K. J.et al. 2012 Electrothermal instability growth in magnetically driven pulsed power liners. Phys. Plasmas (1994-present) 19 (9), 092701. url: http://scitation.aip.org/content/aip/journal/pop/19/9/10.1063/1.4751868.CrossRefGoogle Scholar
Reighard, A. B., Drake, R. P., Mucino, J. E., Knauer, J. P. and Busquet, M. 2007 Planar radiative shock experiments and their comparison to simulations. Phys. Plasmas 14 (5), 056504. url: http://link.aip.org/link/?PHP/14/056504/1.CrossRefGoogle Scholar
Rodriguez, R.et al. 2012 Determination and analysis of plasma parameters for simulations of radiative blast waves launched in clusters of xenon and krypton. Plasma Phys. Control. Fusion 54 (4), 045012. url: http://stacks.iop.org/0741-3335/54/i=4/a=045012.CrossRefGoogle Scholar
Ryutov, D. D., Derzon, M. S. and Matzen, M. K. 2000 The physics of fast z pinches. Rev. Mod. Phys. 72, 167223. url: http://link.aps.org/doi/10.1103/RevModPhys.72.167.CrossRefGoogle Scholar
Ryutov, D. D., Remington, B. A., Robey, H. F. and Drake, R. P. 2001 Magnetohydrodynamic scaling: From astrophysics to the laboratory. Phys. Plasmas 8 (5), 18041816. url: http://link.aip.org/link/?PHP/8/1804/1.CrossRefGoogle Scholar
Slutz, S. A., Herrmann, M. C., Vesey, R. A., Sefkow, A. B., Sinars, D. B., Rovang, D. C., Peterson, K. J. and Cuneo, M. E. 2010 Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field. Phys. Plasmas 17 (5), 056303. url: http://link.aip.org/link/?PHP/17/056303/1.CrossRefGoogle Scholar
Smith, M. D. and Rosen, A. 2003 The instability of fast shocks in molecular clouds. MNRAS 339, 133147.CrossRefGoogle Scholar
Suzuki-Vidal, F.et al. 2010 Generation of episodic magnetically driven plasma jets in a radial foil z-pinch. Phys. Plasmas 17 (11), 112708. url: http://link.aip.org/link/?PHP/17/112708/1.CrossRefGoogle Scholar
Swadling, G. F.et al. 2013a Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches. Phys. Plasmas (1994-present) 20 (2), 022705. url: http://scitation.aip.org/content/aip/journal/pop/20/2/10.1063/1.4790520.CrossRefGoogle Scholar
Swadling, G. F.et al. 2013b Shock-less interactions of ablation streams in tungsten wire array z-pinches. Phys. Plasmas (1994-present) 20 (6), 062706. url: http://scitation.aip.org/content/aip/journal/pop/20/6/10.1063/1.4811385.CrossRefGoogle Scholar
Weinwurm, M., Bland, S. N. and Chittenden, J. P. 2013 Metal liner-driven quasi-isentropic compression of deuterium. Phys. Plasmas (1994-present) 20 (9), 092701. url: http://scitation.aip.org/content/aip/journal/pop/20/9/10.1063/1.4820805.CrossRefGoogle Scholar
Zel'dovich, Y. B. and Raizer, Y. P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Books on Physics. New York: Dover Publications. ISBN 9780486420028. url: http://books.google.co.uk/books?id=zVf27TMNdToC.Google Scholar