Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T00:08:55.178Z Has data issue: false hasContentIssue false

Constraints on dynamo action in plasmas

Published online by Cambridge University Press:  02 November 2016

P. Helander*
Affiliation:
Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK Merton College, Oxford OX1 4JD, UK
M. Strumik
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK
A. A. Schekochihin
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK Merton College, Oxford OX1 4JD, UK
*
Email address for correspondence: [email protected]

Abstract

Upper bounds are derived on the amount of magnetic energy that can be generated by dynamo action in collisional and collisionless plasmas with and without external forcing. A hierarchy of mathematical descriptions is considered for the plasma dynamics: ideal magnetohydrodynamics (MHD), visco-resistive MHD, the double-adiabatic theory of Chew, Goldberger and Low (CGL), kinetic MHD and other kinetic models. It is found that dynamo action is greatly constrained in models where the magnetic moment of any particle species is conserved. In the absence of external forcing, the magnetic energy then remains small at all times if it is small in the initial state. In other words, a small ‘seed’ magnetic field cannot be amplified significantly, regardless of the nature of flow, as long as the collision frequency and gyroradius are small enough to be negligible. A similar conclusion also holds if the system is subject to external forcing as long as this forcing conserves the magnetic moment of at least one plasma species and does not greatly increase the total energy of the plasma (i.e. in practice, is subsonic). Dynamo action therefore always requires collisions or some small-scale kinetic mechanism for breaking the adiabatic invariance of the magnetic moment.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham-Shrauner, B. 1967 Shock jump conditions for an anisotropic plasma. J. Plasma Phys. 1 (3), 379381.Google Scholar
Alvelius, K. 1999 Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11 (7), 18801889.CrossRefGoogle Scholar
Arnold, V. I., Zeldovich, Y. B., Ruzmaikin, A. A. & Sokoloff, D. D. 1982 Steady-state magnetic field in a periodic flow. Sov. Phys. Dokl. 24, 814816.Google Scholar
Balsara, D. S. & Spicer, D. S. 1999 A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149 (2), 270292.CrossRefGoogle Scholar
Batchelor, G. K. 1950 On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. R. Soc. Lond. A 201 (1066), 405416.Google Scholar
Beresnyak, A. 2012 Universal nonlinear small-scale dynamo. Phys. Rev. Lett. 108 (3), 035002.Google Scholar
Biermann, L. & Schlüter, A. 1951 Cosmic radiation and cosmic magnetic fields. 2. Origin of cosmic magnetic fields. Phys. Rev. 82 (6), 863868.Google Scholar
Boldyrev, S. & Cattaneo, F. 2004 Magnetic-field generation in Kolmogorov turbulence. Phys. Rev. Lett. 92 (14), 144501.Google Scholar
Brandenburg, A. & Subramanian, K. 2005 Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417 (1-4), 1209.Google Scholar
Chertkov, M., Falkovich, G., Kolokolov, I. & Vergassola, M. 1999 Small-scale turbulent dynamo. Phys. Rev. Lett. 83 (20), 40654068.Google Scholar
Chew, G. F., Goldberger, M. L. & Low, F. E. 1956 The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. R. Soc. Lond. A 236 (1204), 112118.Google Scholar
Durrer, R. & Neronov, A. 2013 Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62.Google Scholar
Federrath, C., Chabrier, G., Schober, J., Banerjee, R., Klessen, R. S. & Schleicher, D. R. G. 2011 Mach number dependence of turbulent magnetic field amplification: solenoidal versus compressive flows. Phys. Rev. Lett. 107 (11), 114504.Google Scholar
Haugen, N. E. L. & Brandenburg, A. 2004 Suppression of small scale dynamo action by an imposed magnetic field. Phys. Rev. E 70 (3, 2), 036408.Google Scholar
Hazeltine, R. D. & Waelbroeck, F. 1998 The Framework of Plasma Physics. Perseus Books.Google Scholar
Kazantsev, A. P. 1968 Enhancement of a magnetic field by a conducting fluid. Sov. Phys. JETP-USSR 26 (5), 10311034.Google Scholar
Kulsrud, R., Cowley, S. C., Gruzinov, A. V. & Sudan, R. N. 1997 Dynamos and cosmic magnetic fields. Phys. Rep.-Rev. Sec. Phys. Lett. 283 (1-4), 213226.Google Scholar
Kulsrud, R. M. 1983 Mhd description of plasma. In Handbook of Plasma Physics (ed. Rosenbluth, M. N. & Sagdeev, R. Z.), chap. 1.4, pp. 115155. North-Holland.Google Scholar
Kulsrud, R. M. & Zweibel, E. G. 2008 On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71 (4), 046901.Google Scholar
Kunz, M. W., Schekochihin, A. A. & Stone, J. M. 2014 Firehose and mirror instabilities in a collisionless shearing plasma. Phys. Rev. Lett. 112 (20), 205003.Google Scholar
Kurganov, A. & Tadmor, E. 2000 New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (1), 241282.Google Scholar
Melville, S., Schekochihin, A. A. & Kunz, M. W. 2016 Pressure-anisotropy-driven microturbulence and magnetic-field evolution in shearing, collisionless plasma. Mon. Not. R. Astron. Soc. 459 (3), 27012720.Google Scholar
Meneguzzi, M., Frisch, U. & Pouquet, A. 1981 Helical and nonhelical turbulent dynamos. Phys. Rev. Lett. 47 (15), 10601064.Google Scholar
Monchaux, R., Berhanu, M., Bourgoin, M., Moulin, M., Odier, Ph., Pinton, J.-F., Volk, R., Fauve, S., Mordant, N., Petrelis, F. et al. 2007 Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 98 (4), 044502.Google Scholar
Rincon, F., Califano, F., Schekochihin, A. A. & Valentini, F. 2016 Turbulent dynamo in a collisionless plasma. Proc. Natl Acad. Sci. USA 113 (15), 39503953.Google Scholar
Riquelme, M. A., Quataert, E. & Verscharen, D. 2016 PIC simulations of the effect of velocity space instabilities on electron viscosity and themal conduction. Astrophys. J. 824 (2), 123.Google Scholar
Roberts, P. H. & King, E. M. 2013 On the genesis of the Earth’s magnetism. Rep. Prog. Phys. 76 (9), 096801.Google Scholar
Rosin, M. S., Schekochihin, A. A., Rincon, F. & Cowley, S. C. 2011 A non-linear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma. Mon. Not. R. Astron. Soc. 413 (1), 738.Google Scholar
Santos-Lima, R., de Gouveia Dal Pino, E. M., Lazarian, A., Kowal, G. & Falceta-Gonçalves, D. 2011 Dynamo in the intra-cluster medium: Simulation of cgl-mhd turbulent dynamo. In Advances in Plasma Astrophysics (ed. Bonanno, A., de Gouveia Dal Pino, E. & Kosovichev, A. G.), IAU Symposium, vol. 274, pp. 482484. The Edinburgh Building, Cambridge CB2 2RU, United Kingdom: Cambridge University Press, 274. Symposium of the International Astronomical Union, 6–10 September 2010, Giardini Naxos, Italy.Google Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Plunk, G. G., Quataert, E. & Tatsuno, T. 2008 Gyrokinetic turbulence: a nonlinear route to dissipation through phase space. Plasma Phys. Control. Fusion 50 (12), 124024; 35th European-Physical-Society Conference on Plasma Physics, Hersonissos, GREECE, JUN 09-13, 2008.Google Scholar
Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L. & McWilliams, J. C. 2004 Simulations of the small-scale turbulent dynamo. Astrophys. J. 612 (1,1), 276307.CrossRefGoogle Scholar
Schekochihin, A. A., Iskakov, A. B., Cowley, S. C., McWilliams, J. C., Proctor, M. R. E. & Yousef, T. A. 2007 Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers. New J. Phys. 9, 300.Google Scholar
Squire, J., Quataert, E. & Schekochihin, A. A. 2016 A stringent limit on the amplitude of Alfvénic perturbations in high-beta low-collisionality plasmas. Astrophys. J. Lett. 830, L25.Google Scholar
Taylor, J. B. & Newton, S. L. 2015 Special topics in plasma confinement. J. Plasma Phys. 81 (5), 205810501.Google Scholar
Tzeferacos, P., Rigby, A., Bott, A., Bell, A. R., Bingham, R., Cattaneo, F., Churazov, E. M., Fiuza, F., Forest, C., Foster, J. et al. 2016 Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma (submitted to Nature).Google Scholar
Zeldovich, Y. B., Ruzmaikin, A. A., Molchanov, S. A. & Sokoloff, D. D. 1984 Kinematic dynamo problem in a linear velocity-field. J. Fluid Mech. 144 (Jul), 111.CrossRefGoogle Scholar
Zhuravleva, I., Churazov, E., Schekochihin, A. A., Allen, S. W., Arevalo, P., Fabian, A. C., Forman, W. R., Sanders, J. S., Simionescu, A., Sunyaev, R. et al. 2014 Turbulent heating in galaxy clusters brightest in X-rays. Nature 515 (7525), 8587.Google Scholar
Zweibel, E. G. & Heiles, C. 1997 Magnetic fields in galaxies and beyond. Nature 385 (6612), 131136.Google Scholar