Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T13:17:15.076Z Has data issue: false hasContentIssue false

Comparison of electron and electronic temperatures in recombining nozzle flow of ionized nitrogen—hydrogen mixture. Part 1. Theory

Published online by Cambridge University Press:  13 March 2009

Chul Park
Affiliation:
Ames Research Center, NASA, Moffett Field, California 94035

Abstract

This is part 1 of a two-part paper. In this part, relaxation of the population distribution of electronic states is studied theoretically for a highly-ionized nitrogen- hydrogen mixture expanding through a nozzle, wherein the hydrogen content is less than 0.1 %. The analysis incorporates quantum-mechanical excitation rate coefficients, and considers the effects of wall cooling and absorption of radiation. Calculations are carried out for a condition produced experimentally, the experiment being the subject of part 2. The electronic excitation temperatures are deduced from the computed population distributions along the nozzle, and are compared with the calculated electron temperatures; this shows a large discrepancy between the two.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appleton, J. P. & Bray, K. N. C. 1964 J. Fluid Mech. 20, 659.CrossRefGoogle Scholar
Bates, D. R., Kingston, A. E. & McWhirter, R. W. P. 1962 Proc. Roy. Soc. 267, 297.Google Scholar
Bowen, S. W. & Park, C. 1971 A.I.A.A. J. 9, 493.Google Scholar
Bray, K. N. C. 1964 High Temperature Aspects of Hypersonic Flow (ed. Nelson, W.), p. 67. Pergamon.Google Scholar
Chou, Y. S. & Talbot, L. 1967 A.I.A.A. J. 5, 2166.Google Scholar
Fay, J. A. & Kamp, N. H. 1963 A.I.A.A. J. 1, 2741.Google Scholar
Gryzinski, M. 1959 Phys. Rev. 115, 374.CrossRefGoogle Scholar
Griem, H. R. 1964 Plasma Speetroscopy. McGraw-Hill.Google Scholar
Holstein, T. 1947 Phys. Rev. 72, 1212.CrossRefGoogle Scholar
Holstein, T. 1951 Phys. Rev. 83, 1159.CrossRefGoogle Scholar
Kruger, C. H. & Mitchner, M. 1967 Phys. Fluids, 10, 1953.CrossRefGoogle Scholar
Lotz, W. 1967 Z. Phys. 206, 205.CrossRefGoogle Scholar
McWhirter, R. W. P. 1956 Plasma Diagnostic Techniques. (ed. Huddlestone, R. H. and Leonard, S. L.), p. 541. Academic.Google Scholar
Okuno, A. F. & Park, C. 1970 Trans. ASME, C 92, 372.CrossRefGoogle Scholar
Park, C. 1968 a A.I.A.A. Paper 68734.CrossRefGoogle Scholar
Park, C. 1968 b J. Quant. Spectrosc. Radiative Transfer, 8, 1633.CrossRefGoogle Scholar
Park, C. 1969 a A.I.A.A. J. 7, 1653.Google Scholar
Park, C. 1969 b A.I.A.A. J. 6, 2090.Google Scholar
Park, C. 1969 c A.I.A.A. Paper 69–48.CrossRefGoogle Scholar
Park, C. 1971 J. Quant. Spectrosc. Radiative Transfer, 11, 7.CrossRefGoogle Scholar
Park, C. 1972 J. Quant. Spectrosc. Radiative Transfer, 12, 323.CrossRefGoogle Scholar
Peach, G. 1970 Roy. Astron. Soc. 73, 1.Google Scholar
Richter, J. 1968 Plasma Diagnostics (ed. Lochte-Holtgreven, W.), p. 1. North-Holland.Google Scholar
Sampson, D. H. 1969 Astrophys. J. 155, 575.CrossRefGoogle Scholar
Smith, K., Henry, R. J. W. & Burke, P. G. 1967 Phys. Rev. 157, 51.CrossRefGoogle Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases. Interscience.Google Scholar
Traving, G. 1968 Plasma Diagnostics (ed. Lochte-Holtgreven, W.), p. 66. North-Holland.Google Scholar
Van, Regemorter H. 1962 Astrophys. J. 136, 906.Google Scholar
Viegas, J. R. 1971 Phys. Fluids, 14, 541.CrossRefGoogle Scholar
Wiese, W. L., Smith, M. W. & Glennon, B. M. 1966 National Bureau of Standards, NSRDS-NBS 4.Google Scholar