Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T00:59:07.914Z Has data issue: false hasContentIssue false

A comparison between electron orbits for both an axial magnetic field and an ion-channel guiding in a FEL with an electromagnetic wave wiggler

Published online by Cambridge University Press:  01 April 2008

H. MEHDIAN
Affiliation:
Department of Physics and Institute for Plasma Research, Tarbiat Moalem University, 49 Dr Mofatteh Avenue, Tehran 15614, Iran ([email protected]; [email protected])
S. JAFARI
Affiliation:
Department of Physics and Institute for Plasma Research, Tarbiat Moalem University, 49 Dr Mofatteh Avenue, Tehran 15614, Iran ([email protected]; [email protected])

Abstract

The operation of a free-electron laser (FEL) with electromagnetic wave wiggler in the presence of an ion-channel guiding as well as an axial guide magnetic field is considered and compared. Theoretical studies of electron trajectories and dispersion relations in a combined ion electrostatic field as well as large-amplitude backward-propagating electromagnetic waves are analyzed. The large-amplitude wave acts like a magnetostatic wiggler in a FEL. The results of a numerical study are presented and discussed. It is shown that in the wiggler pumped ion-channel free-electron laser (WPIC-FEL), electron orbits and dispersion relation are time-dependent, and over time, electron orbits while oscillating bear a periodic motion.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Freund, H. P., Kehs, R. A. and Granatstein, V. L. 1986 Phys. Rev. A 34, 2007.CrossRefGoogle Scholar
[2]Freund, H. P., Kehs, R. A. and Granatstein, V. L. 1985 IEEE, J. Quantum Electron. 21, 1080.CrossRefGoogle Scholar
[3]Sprangle, P. and Smith, R. A. 1980 Phys. Rev. A 21, 293.CrossRefGoogle Scholar
[4]Spatschek, K. H. et al. 1982 Opt. Comm. 41, 295.CrossRefGoogle Scholar
[5]Kwan, T. and Dawson, J. M. 1979 Phys. Fluids 22, 1089.CrossRefGoogle Scholar
[6]Sprangle, P. and Granatstein, V. L. 1978 Phys. Rev. A 17, 1792.CrossRefGoogle Scholar
[7]Takayama, K. and Hiramatsu, S. 1998 Phys. Rev. A 37, 173.CrossRefGoogle Scholar
[8]Jha, P. and Kumar, P. 1998 Phys. Rev. E 57, 2256.Google Scholar
[9]Seo, Y., Tripethi, V. K. and Liu, C. S. 1989 Phys. Fluids B 1, 221.CrossRefGoogle Scholar
[10]Jha, P. and Kumar, P. 1996 IEEE Trans. Plasma Sci. 24, 1359.CrossRefGoogle Scholar
[11]Mehdian, H., Esmailzadeh, M. and Willett, J. E. 2001 Phys. Plasmas 8, 3776.CrossRefGoogle Scholar
[12]Esmailzadeh, M., Mehdian, H. and Willett, J. E. 2002 Phys. Rev. E 65, 016501.Google Scholar
[13]Stenflo, L. 1976 Phys. Scripta 14, 320.CrossRefGoogle Scholar
[14]Stenflo, L. 1981 Phys. Scripta 23, 779.CrossRefGoogle Scholar
[15]Goebel, D. M., Carmel, Y. and Nusinovich, G. S. 1999 Phys. Plasmas 6, 2225.CrossRefGoogle Scholar
[16]Mehdian, H. and Raghavi, A. 2006 Plasma Phys. Control. Fusion 48, 991.CrossRefGoogle Scholar
[17]Esmailzadeh, M., Ghafouri, V., Taghavi, A. and Namvar, E. 2006 Phys. Plasmas 13, 043103.CrossRefGoogle Scholar
[18]Freund, H. P. and Antonsen, J. M. 1996 Principles of Free-Electron Lasers. London: Chapman and Hall.Google Scholar
[19]Shenggang, L., Barker, R. J., Hong, G. and Yang, Y. 2001 Nucl. Instrum. Methods Phys. Res. A 475, 153.CrossRefGoogle Scholar